Cargando…
Geometric learning of functional brain network on the correlation manifold
The correlation matrix is a typical representation of node interactions in functional brain network analysis. The analysis of the correlation matrix to characterize brain networks observed in several neuroimaging modalities has been conducted predominantly in the Euclidean space by assuming that pai...
Autores principales: | You, Kisung, Park, Hae-Jeong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9588057/ https://www.ncbi.nlm.nih.gov/pubmed/36273234 http://dx.doi.org/10.1038/s41598-022-21376-0 |
Ejemplares similares
-
The geometric topology of 3-manifolds
por: Bing, R H
Publicado: (1983) -
Riemannian topology and geometric structures on manifolds
por: Galicki, Krzysztof, et al.
Publicado: (2009) -
On the geometric and the algebraic rank of graph manifolds
por: Schultens, J, et al.
Publicado: (2002) -
The algebraic characterization of geometric 4-manifolds
por: Hillman, J A
Publicado: (1994) -
Ricci flow and geometrization of 3-manifolds
por: Morgan, John W, et al.
Publicado: (2010)