Cargando…
Stochastic learning and extremal-field map based autonomous guidance of low-thrust spacecraft
A supervised stochastic learning method called the Gaussian Process Regression (GPR) is used to design an autonomous guidance law for low-thrust spacecraft. The problems considered are both of the time- and fuel-optimal regimes and a methodology based on “perturbed back-propagation” approach is pres...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9588070/ https://www.ncbi.nlm.nih.gov/pubmed/36273095 http://dx.doi.org/10.1038/s41598-022-22730-y |
Sumario: | A supervised stochastic learning method called the Gaussian Process Regression (GPR) is used to design an autonomous guidance law for low-thrust spacecraft. The problems considered are both of the time- and fuel-optimal regimes and a methodology based on “perturbed back-propagation” approach is presented to generate optimal control along neighboring optimal trajectories which form the extremal bundle constituting the training data-set. The use of this methodology coupled with a GPR approximation of the spacecraft control via prediction of the costate n-tuple or the primer vector respectively for time- and fuel-optimal trajectories at discrete time-steps is demonstrated to be effective in designing an autonomous guidance law using the open-loop bundle of trajectories to-go. The methodology is applied to the Earth-3671 Dionysus time-optimal interplanetary transfer of a low-thrust spacecraft with off-nominal thruster performance and the resulting guidance law is evaluated under different design parameters using case-studies. The results highlight the utility and applicability of the proposed framework with scope for further improvements. |
---|