Cargando…
A semi-supervised adaptive Markov Gaussian embedding process (SAMGEP) for prediction of phenotype event times using the electronic health record
While there exist numerous methods to identify binary phenotypes (i.e. COPD) using electronic health record (EHR) data, few exist to ascertain the timings of phenotype events (i.e. COPD onset or exacerbations). Estimating event times could enable more powerful use of EHR data for longitudinal risk m...
Autores principales: | Ahuja, Yuri, Wen, Jun, Hong, Chuan, Xia, Zongqi, Huang, Sicong, Cai, Tianxi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9588081/ https://www.ncbi.nlm.nih.gov/pubmed/36273240 http://dx.doi.org/10.1038/s41598-022-22585-3 |
Ejemplares similares
-
Prior Adaptive Semi-supervised Learning with Application to EHR Phenotyping
por: Zhang, Yichi, et al.
Publicado: (2022) -
Segmenting Continuous Motions with Hidden Semi-markov Models and Gaussian Processes
por: Nakamura, Tomoaki, et al.
Publicado: (2017) -
Person re-identification via semi-supervised adaptive graph embedding
por: Liu, Jiao, et al.
Publicado: (2022) -
Epidemic threshold of a COVID-19 model with gaussian white noise and semi-Markov switching
por: Sun, Qianqian, et al.
Publicado: (2023) -
Semi-supervised prediction of protein subcellular localization using abstraction augmented Markov models
por: Caragea, Cornelia, et al.
Publicado: (2010)