Cargando…
Improving reproducibility and performance of radiomics in low‐dose CT using cycle GANs
BACKGROUND: As a means to extract biomarkers from medical imaging, radiomics has attracted increased attention from researchers. However, reproducibility and performance of radiomics in low‐dose CT scans are still poor, mostly due to noise. Deep learning generative models can be used to denoise thes...
Autores principales: | Chen, Junhua, Wee, Leonard, Dekker, Andre, Bermejo, Inigo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9588275/ https://www.ncbi.nlm.nih.gov/pubmed/35906893 http://dx.doi.org/10.1002/acm2.13739 |
Ejemplares similares
-
Lung cancer diagnosis using deep attention‐based multiple instance learning and radiomics
por: Chen, Junhua, et al.
Publicado: (2022) -
Multicenter CT phantoms public dataset for radiomics reproducibility tests
por: Kalendralis, Petros, et al.
Publicado: (2019) -
Repeatability and Reproducibility of Radiomic Features: A Systematic Review
por: Traverso, Alberto, et al.
Publicado: (2018) -
Impact of image preprocessing methods on reproducibility of radiomic features in multimodal magnetic resonance imaging in glioblastoma
por: Moradmand, Hajar, et al.
Publicado: (2019) -
Technical Note: Ontology‐guided radiomics analysis workflow (O‐RAW)
por: Shi, Zhenwei, et al.
Publicado: (2019)