Cargando…
Machine Learning-Based Hearing Aid Fitting Personalization Using Clinical Fitting Data
The initial software fitting prescribed by the fitting formula largely depends on the patient's hearing loss, which may not be the optimal preference for a particular user. Certain criteria must also be readjusted by an audiologist to meet the user-specific requirements. Therefore, this study f...
Autores principales: | Mondol, S. I. M. M. Raton, Kim, Hyun Ji, Kim, Kyu Sung, Lee, Sangmin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9588352/ https://www.ncbi.nlm.nih.gov/pubmed/36285186 http://dx.doi.org/10.1155/2022/1667672 |
Ejemplares similares
-
Hybrid Machine Learning Framework for Multistage Parkinson’s Disease Classification Using Acoustic Features of Sustained Korean Vowels
por: Mondol, S. I. M. M. Raton, et al.
Publicado: (2023) -
Estimating hearing aid fitting presets with machine learning–based clustering strategies
por: Belitz, Chelzy, et al.
Publicado: (2021) -
Hearing aid fitting in older persons with hearing impairment: the influence of cognitive function, age, and hearing loss on hearing aid benefit
por: Meister, Hartmut, et al.
Publicado: (2015) -
Personalization of Hearing Aid Fitting Based on Adaptive Dynamic Range Optimization
por: Ni, Aoxin, et al.
Publicado: (2022) -
Effectiveness of an Over-the-Counter Self-fitting Hearing Aid Compared With an Audiologist-Fitted Hearing Aid: A Randomized Clinical Trial
por: De Sousa, Karina C., et al.
Publicado: (2023)