Cargando…
Auto-encoded Latent Representations of White Matter Streamlines for Quantitative Distance Analysis
Parcellation of whole brain tractograms is a critical step to study brain white matter structures and connectivity patterns. The existing methods based on supervised classification of streamlines into predefined streamline bundle types are not designed to explore sub-bundle structures, and methods w...
Autores principales: | Zhong, Shenjun, Chen, Zhaolin, Egan, Gary |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9588484/ https://www.ncbi.nlm.nih.gov/pubmed/35731372 http://dx.doi.org/10.1007/s12021-022-09593-4 |
Ejemplares similares
-
BundleWarp, streamline-based nonlinear registration of white matter tracts
por: Chandio, Bramsh Qamar, et al.
Publicado: (2023) -
Semantic representation in the white matter pathway
por: Fang, Yuxing, et al.
Publicado: (2018) -
Deep Learning for Image Enhancement and Correction in Magnetic Resonance Imaging—State-of-the-Art and Challenges
por: Chen, Zhaolin, et al.
Publicado: (2022) -
Unsupervised Learning of Disentangled Representation via Auto-Encoding: A Survey
por: Eddahmani, Ikram, et al.
Publicado: (2023) -
Latent Network Construction for Univariate Time Series Based on Variational Auto-Encode
por: Sun, Jiancheng, et al.
Publicado: (2021)