Cargando…
A flexible approach for causal inference with multiple treatments and clustered survival outcomes
When drawing causal inferences about the effects of multiple treatments on clustered survival outcomes using observational data, we need to address implications of the multilevel data structure, multiple treatments, censoring, and unmeasured confounding for causal analyses. Few off‐the‐shelf causal...
Autores principales: | Hu, Liangyuan, Ji, Jiayi, Ennis, Ronald D., Hogan, Joseph W. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley & Sons, Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9588538/ https://www.ncbi.nlm.nih.gov/pubmed/35948011 http://dx.doi.org/10.1002/sim.9548 |
Ejemplares similares
-
A Flexible Approach for Assessing Heterogeneity of Causal Treatment Effects on Patient Survival Using Large Datasets with Clustered Observations
por: Hu, Liangyuan, et al.
Publicado: (2022) -
Estimation of causal effects of multiple treatments in observational studies with a binary outcome
por: Hu, Liangyuan, et al.
Publicado: (2020) -
Estimating the causal effects of multiple intermittent treatments with application to COVID-19
por: Hu, Liangyuan, et al.
Publicado: (2023) -
A flexible approach for variable selection in large-scale healthcare database studies with missing covariate and outcome data
por: Lin, Jung-Yi Joyce, et al.
Publicado: (2022) -
The Control Outcome Calibration Approach for Causal Inference With Unobserved Confounding
por: Tchetgen Tchetgen, Eric
Publicado: (2014)