Cargando…
Multimodal survival prediction in advanced pancreatic cancer using machine learning
BACKGROUND: Existing risk scores appear insufficient to assess the individual survival risk of patients with advanced pancreatic ductal adenocarcinoma (PDAC) and do not take advantage of the variety of parameters that are collected during clinical care. METHODS: In this retrospective study, we built...
Autores principales: | , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9588888/ https://www.ncbi.nlm.nih.gov/pubmed/35988455 http://dx.doi.org/10.1016/j.esmoop.2022.100555 |
_version_ | 1784814173240164352 |
---|---|
author | Keyl, J. Kasper, S. Wiesweg, M. Götze, J. Schönrock, M. Sinn, M. Berger, A. Nasca, E. Kostbade, K. Schumacher, B. Markus, P. Albers, D. Treckmann, J. Schmid, K.W. Schildhaus, H.-U. Siveke, J.T. Schuler, M. Kleesiek, J. |
author_facet | Keyl, J. Kasper, S. Wiesweg, M. Götze, J. Schönrock, M. Sinn, M. Berger, A. Nasca, E. Kostbade, K. Schumacher, B. Markus, P. Albers, D. Treckmann, J. Schmid, K.W. Schildhaus, H.-U. Siveke, J.T. Schuler, M. Kleesiek, J. |
author_sort | Keyl, J. |
collection | PubMed |
description | BACKGROUND: Existing risk scores appear insufficient to assess the individual survival risk of patients with advanced pancreatic ductal adenocarcinoma (PDAC) and do not take advantage of the variety of parameters that are collected during clinical care. METHODS: In this retrospective study, we built a random survival forest model from clinical data of 203 patients with advanced PDAC. The parameters were assessed before initiation of systemic treatment and included age, CA19-9, C-reactive protein, metastatic status, neutrophil-to-lymphocyte ratio and total serum protein level. Separate models including imaging and molecular parameters were built for subgroups. RESULTS: Over the entire cohort, a model based on clinical parameters achieved a c-index of 0.71. Our approach outperformed the American Joint Committee on Cancer (AJCC) staging system and the modified Glasgow Prognostic Score (mGPS) in the identification of high- and low-risk subgroups. Inclusion of the KRAS p.G12D mutational status could further improve the prediction, whereas radiomics data of the primary tumor only showed little benefit. In an external validation cohort of PDAC patients with liver metastases, our model achieved a c-index of 0.67 (mGPS: 0.59). CONCLUSIONS: The combination of multimodal data and machine-learning algorithms holds potential for personalized prognostication in advanced PDAC already at diagnosis. |
format | Online Article Text |
id | pubmed-9588888 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-95888882022-10-25 Multimodal survival prediction in advanced pancreatic cancer using machine learning Keyl, J. Kasper, S. Wiesweg, M. Götze, J. Schönrock, M. Sinn, M. Berger, A. Nasca, E. Kostbade, K. Schumacher, B. Markus, P. Albers, D. Treckmann, J. Schmid, K.W. Schildhaus, H.-U. Siveke, J.T. Schuler, M. Kleesiek, J. ESMO Open Original Research BACKGROUND: Existing risk scores appear insufficient to assess the individual survival risk of patients with advanced pancreatic ductal adenocarcinoma (PDAC) and do not take advantage of the variety of parameters that are collected during clinical care. METHODS: In this retrospective study, we built a random survival forest model from clinical data of 203 patients with advanced PDAC. The parameters were assessed before initiation of systemic treatment and included age, CA19-9, C-reactive protein, metastatic status, neutrophil-to-lymphocyte ratio and total serum protein level. Separate models including imaging and molecular parameters were built for subgroups. RESULTS: Over the entire cohort, a model based on clinical parameters achieved a c-index of 0.71. Our approach outperformed the American Joint Committee on Cancer (AJCC) staging system and the modified Glasgow Prognostic Score (mGPS) in the identification of high- and low-risk subgroups. Inclusion of the KRAS p.G12D mutational status could further improve the prediction, whereas radiomics data of the primary tumor only showed little benefit. In an external validation cohort of PDAC patients with liver metastases, our model achieved a c-index of 0.67 (mGPS: 0.59). CONCLUSIONS: The combination of multimodal data and machine-learning algorithms holds potential for personalized prognostication in advanced PDAC already at diagnosis. Elsevier 2022-08-18 /pmc/articles/PMC9588888/ /pubmed/35988455 http://dx.doi.org/10.1016/j.esmoop.2022.100555 Text en © 2022 The Authors https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Original Research Keyl, J. Kasper, S. Wiesweg, M. Götze, J. Schönrock, M. Sinn, M. Berger, A. Nasca, E. Kostbade, K. Schumacher, B. Markus, P. Albers, D. Treckmann, J. Schmid, K.W. Schildhaus, H.-U. Siveke, J.T. Schuler, M. Kleesiek, J. Multimodal survival prediction in advanced pancreatic cancer using machine learning |
title | Multimodal survival prediction in advanced pancreatic cancer using machine learning |
title_full | Multimodal survival prediction in advanced pancreatic cancer using machine learning |
title_fullStr | Multimodal survival prediction in advanced pancreatic cancer using machine learning |
title_full_unstemmed | Multimodal survival prediction in advanced pancreatic cancer using machine learning |
title_short | Multimodal survival prediction in advanced pancreatic cancer using machine learning |
title_sort | multimodal survival prediction in advanced pancreatic cancer using machine learning |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9588888/ https://www.ncbi.nlm.nih.gov/pubmed/35988455 http://dx.doi.org/10.1016/j.esmoop.2022.100555 |
work_keys_str_mv | AT keylj multimodalsurvivalpredictioninadvancedpancreaticcancerusingmachinelearning AT kaspers multimodalsurvivalpredictioninadvancedpancreaticcancerusingmachinelearning AT wieswegm multimodalsurvivalpredictioninadvancedpancreaticcancerusingmachinelearning AT gotzej multimodalsurvivalpredictioninadvancedpancreaticcancerusingmachinelearning AT schonrockm multimodalsurvivalpredictioninadvancedpancreaticcancerusingmachinelearning AT sinnm multimodalsurvivalpredictioninadvancedpancreaticcancerusingmachinelearning AT bergera multimodalsurvivalpredictioninadvancedpancreaticcancerusingmachinelearning AT nascae multimodalsurvivalpredictioninadvancedpancreaticcancerusingmachinelearning AT kostbadek multimodalsurvivalpredictioninadvancedpancreaticcancerusingmachinelearning AT schumacherb multimodalsurvivalpredictioninadvancedpancreaticcancerusingmachinelearning AT markusp multimodalsurvivalpredictioninadvancedpancreaticcancerusingmachinelearning AT albersd multimodalsurvivalpredictioninadvancedpancreaticcancerusingmachinelearning AT treckmannj multimodalsurvivalpredictioninadvancedpancreaticcancerusingmachinelearning AT schmidkw multimodalsurvivalpredictioninadvancedpancreaticcancerusingmachinelearning AT schildhaushu multimodalsurvivalpredictioninadvancedpancreaticcancerusingmachinelearning AT sivekejt multimodalsurvivalpredictioninadvancedpancreaticcancerusingmachinelearning AT schulerm multimodalsurvivalpredictioninadvancedpancreaticcancerusingmachinelearning AT kleesiekj multimodalsurvivalpredictioninadvancedpancreaticcancerusingmachinelearning |