Cargando…

Multimodal survival prediction in advanced pancreatic cancer using machine learning

BACKGROUND: Existing risk scores appear insufficient to assess the individual survival risk of patients with advanced pancreatic ductal adenocarcinoma (PDAC) and do not take advantage of the variety of parameters that are collected during clinical care. METHODS: In this retrospective study, we built...

Descripción completa

Detalles Bibliográficos
Autores principales: Keyl, J., Kasper, S., Wiesweg, M., Götze, J., Schönrock, M., Sinn, M., Berger, A., Nasca, E., Kostbade, K., Schumacher, B., Markus, P., Albers, D., Treckmann, J., Schmid, K.W., Schildhaus, H.-U., Siveke, J.T., Schuler, M., Kleesiek, J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9588888/
https://www.ncbi.nlm.nih.gov/pubmed/35988455
http://dx.doi.org/10.1016/j.esmoop.2022.100555
_version_ 1784814173240164352
author Keyl, J.
Kasper, S.
Wiesweg, M.
Götze, J.
Schönrock, M.
Sinn, M.
Berger, A.
Nasca, E.
Kostbade, K.
Schumacher, B.
Markus, P.
Albers, D.
Treckmann, J.
Schmid, K.W.
Schildhaus, H.-U.
Siveke, J.T.
Schuler, M.
Kleesiek, J.
author_facet Keyl, J.
Kasper, S.
Wiesweg, M.
Götze, J.
Schönrock, M.
Sinn, M.
Berger, A.
Nasca, E.
Kostbade, K.
Schumacher, B.
Markus, P.
Albers, D.
Treckmann, J.
Schmid, K.W.
Schildhaus, H.-U.
Siveke, J.T.
Schuler, M.
Kleesiek, J.
author_sort Keyl, J.
collection PubMed
description BACKGROUND: Existing risk scores appear insufficient to assess the individual survival risk of patients with advanced pancreatic ductal adenocarcinoma (PDAC) and do not take advantage of the variety of parameters that are collected during clinical care. METHODS: In this retrospective study, we built a random survival forest model from clinical data of 203 patients with advanced PDAC. The parameters were assessed before initiation of systemic treatment and included age, CA19-9, C-reactive protein, metastatic status, neutrophil-to-lymphocyte ratio and total serum protein level. Separate models including imaging and molecular parameters were built for subgroups. RESULTS: Over the entire cohort, a model based on clinical parameters achieved a c-index of 0.71. Our approach outperformed the American Joint Committee on Cancer (AJCC) staging system and the modified Glasgow Prognostic Score (mGPS) in the identification of high- and low-risk subgroups. Inclusion of the KRAS p.G12D mutational status could further improve the prediction, whereas radiomics data of the primary tumor only showed little benefit. In an external validation cohort of PDAC patients with liver metastases, our model achieved a c-index of 0.67 (mGPS: 0.59). CONCLUSIONS: The combination of multimodal data and machine-learning algorithms holds potential for personalized prognostication in advanced PDAC already at diagnosis.
format Online
Article
Text
id pubmed-9588888
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-95888882022-10-25 Multimodal survival prediction in advanced pancreatic cancer using machine learning Keyl, J. Kasper, S. Wiesweg, M. Götze, J. Schönrock, M. Sinn, M. Berger, A. Nasca, E. Kostbade, K. Schumacher, B. Markus, P. Albers, D. Treckmann, J. Schmid, K.W. Schildhaus, H.-U. Siveke, J.T. Schuler, M. Kleesiek, J. ESMO Open Original Research BACKGROUND: Existing risk scores appear insufficient to assess the individual survival risk of patients with advanced pancreatic ductal adenocarcinoma (PDAC) and do not take advantage of the variety of parameters that are collected during clinical care. METHODS: In this retrospective study, we built a random survival forest model from clinical data of 203 patients with advanced PDAC. The parameters were assessed before initiation of systemic treatment and included age, CA19-9, C-reactive protein, metastatic status, neutrophil-to-lymphocyte ratio and total serum protein level. Separate models including imaging and molecular parameters were built for subgroups. RESULTS: Over the entire cohort, a model based on clinical parameters achieved a c-index of 0.71. Our approach outperformed the American Joint Committee on Cancer (AJCC) staging system and the modified Glasgow Prognostic Score (mGPS) in the identification of high- and low-risk subgroups. Inclusion of the KRAS p.G12D mutational status could further improve the prediction, whereas radiomics data of the primary tumor only showed little benefit. In an external validation cohort of PDAC patients with liver metastases, our model achieved a c-index of 0.67 (mGPS: 0.59). CONCLUSIONS: The combination of multimodal data and machine-learning algorithms holds potential for personalized prognostication in advanced PDAC already at diagnosis. Elsevier 2022-08-18 /pmc/articles/PMC9588888/ /pubmed/35988455 http://dx.doi.org/10.1016/j.esmoop.2022.100555 Text en © 2022 The Authors https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Original Research
Keyl, J.
Kasper, S.
Wiesweg, M.
Götze, J.
Schönrock, M.
Sinn, M.
Berger, A.
Nasca, E.
Kostbade, K.
Schumacher, B.
Markus, P.
Albers, D.
Treckmann, J.
Schmid, K.W.
Schildhaus, H.-U.
Siveke, J.T.
Schuler, M.
Kleesiek, J.
Multimodal survival prediction in advanced pancreatic cancer using machine learning
title Multimodal survival prediction in advanced pancreatic cancer using machine learning
title_full Multimodal survival prediction in advanced pancreatic cancer using machine learning
title_fullStr Multimodal survival prediction in advanced pancreatic cancer using machine learning
title_full_unstemmed Multimodal survival prediction in advanced pancreatic cancer using machine learning
title_short Multimodal survival prediction in advanced pancreatic cancer using machine learning
title_sort multimodal survival prediction in advanced pancreatic cancer using machine learning
topic Original Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9588888/
https://www.ncbi.nlm.nih.gov/pubmed/35988455
http://dx.doi.org/10.1016/j.esmoop.2022.100555
work_keys_str_mv AT keylj multimodalsurvivalpredictioninadvancedpancreaticcancerusingmachinelearning
AT kaspers multimodalsurvivalpredictioninadvancedpancreaticcancerusingmachinelearning
AT wieswegm multimodalsurvivalpredictioninadvancedpancreaticcancerusingmachinelearning
AT gotzej multimodalsurvivalpredictioninadvancedpancreaticcancerusingmachinelearning
AT schonrockm multimodalsurvivalpredictioninadvancedpancreaticcancerusingmachinelearning
AT sinnm multimodalsurvivalpredictioninadvancedpancreaticcancerusingmachinelearning
AT bergera multimodalsurvivalpredictioninadvancedpancreaticcancerusingmachinelearning
AT nascae multimodalsurvivalpredictioninadvancedpancreaticcancerusingmachinelearning
AT kostbadek multimodalsurvivalpredictioninadvancedpancreaticcancerusingmachinelearning
AT schumacherb multimodalsurvivalpredictioninadvancedpancreaticcancerusingmachinelearning
AT markusp multimodalsurvivalpredictioninadvancedpancreaticcancerusingmachinelearning
AT albersd multimodalsurvivalpredictioninadvancedpancreaticcancerusingmachinelearning
AT treckmannj multimodalsurvivalpredictioninadvancedpancreaticcancerusingmachinelearning
AT schmidkw multimodalsurvivalpredictioninadvancedpancreaticcancerusingmachinelearning
AT schildhaushu multimodalsurvivalpredictioninadvancedpancreaticcancerusingmachinelearning
AT sivekejt multimodalsurvivalpredictioninadvancedpancreaticcancerusingmachinelearning
AT schulerm multimodalsurvivalpredictioninadvancedpancreaticcancerusingmachinelearning
AT kleesiekj multimodalsurvivalpredictioninadvancedpancreaticcancerusingmachinelearning