Cargando…
Using stacked deep learning models based on PET/CT images and clinical data to predict EGFR mutations in lung cancer
PURPOSE: To determine whether stacked deep learning models based on PET/CT images and clinical data can help to predict epidermal growth factor receptor (EGFR) mutations in lung cancer. METHODS: We analyzed data from two public datasets of patients who underwent (18)F-FDG PET/CT. Three PET deep lear...
Autores principales: | Chen, Song, Han, Xiangjun, Tian, Guangwei, Cao, Yu, Zheng, Xuting, Li, Xuena, Li, Yaming |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9588917/ https://www.ncbi.nlm.nih.gov/pubmed/36300191 http://dx.doi.org/10.3389/fmed.2022.1041034 |
Ejemplares similares
-
Can (18)F-FDG PET/CT predict EGFR status in patients with non-small cell lung cancer? A systematic review and meta-analysis
por: Du, Bulin, et al.
Publicado: (2021) -
PD-L1 in Lung Adenocarcinoma: Insights into the Role of (18)F-FDG PET/CT
por: Cui, Yan, et al.
Publicado: (2020) -
PET/CT Based EGFR Mutation Status Classification of NSCLC Using Deep Learning Features and Radiomics Features
por: Huang, Weicheng, et al.
Publicado: (2022) -
Discordant Metabolic Response on (18)F-FDG PET/CT in Synchronous Primary Gastric Lymphoma and Gastric Adenocarcinoma
por: Hao, Wanting, et al.
Publicado: (2022) -
Prediction of EGFR Mutation Status Based on (18)F-FDG PET/CT Imaging Using Deep Learning-Based Model in Lung Adenocarcinoma
por: Yin, Guotao, et al.
Publicado: (2021)