Cargando…

Self-supervised learning enables 3D digital subtraction angiography reconstruction from ultra-sparse 2D projection views: A multicenter study

3D digital subtraction angiography (DSA) reconstruction from rotational 2D projection X-ray angiography is an important basis for diagnosis and treatment of intracranial aneurysms (IAs). The gold standard requires approximately 133 different projection views for 3D reconstruction. A method to signif...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhao, Huangxuan, Zhou, Zhenghong, Wu, Feihong, Xiang, Dongqiao, Zhao, Hui, Zhang, Wei, Li, Lin, Li, Zhong, Huang, Jia, Hu, Hongyao, Liu, Chengbo, Wang, Tao, Liu, Wenyu, Ma, Jinqiang, Yang, Fan, Wang, Xinggang, Zheng, Chuansheng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9589028/
https://www.ncbi.nlm.nih.gov/pubmed/36208630
http://dx.doi.org/10.1016/j.xcrm.2022.100775
_version_ 1784814207687983104
author Zhao, Huangxuan
Zhou, Zhenghong
Wu, Feihong
Xiang, Dongqiao
Zhao, Hui
Zhang, Wei
Li, Lin
Li, Zhong
Huang, Jia
Hu, Hongyao
Liu, Chengbo
Wang, Tao
Liu, Wenyu
Ma, Jinqiang
Yang, Fan
Wang, Xinggang
Zheng, Chuansheng
author_facet Zhao, Huangxuan
Zhou, Zhenghong
Wu, Feihong
Xiang, Dongqiao
Zhao, Hui
Zhang, Wei
Li, Lin
Li, Zhong
Huang, Jia
Hu, Hongyao
Liu, Chengbo
Wang, Tao
Liu, Wenyu
Ma, Jinqiang
Yang, Fan
Wang, Xinggang
Zheng, Chuansheng
author_sort Zhao, Huangxuan
collection PubMed
description 3D digital subtraction angiography (DSA) reconstruction from rotational 2D projection X-ray angiography is an important basis for diagnosis and treatment of intracranial aneurysms (IAs). The gold standard requires approximately 133 different projection views for 3D reconstruction. A method to significantly reduce the radiation dosage while ensuring the reconstruction quality is yet to be developed. We propose a self-supervised learning method to realize 3D-DSA reconstruction using ultra-sparse 2D projections. 202 cases (100 from one hospital for training and testing, 102 from two other hospitals for external validation) suspected to be suffering from IAs were conducted to analyze the reconstructed images. Two radiologists scored the reconstructed images from internal and external datasets using eight projections and identified all 82 lesions with high diagnostic confidence. The radiation dosages are approximately 1/16.7 compared with the gold standard method. Our proposed method can help develop a revolutionary 3D-DSA reconstruction method for use in clinic.
format Online
Article
Text
id pubmed-9589028
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-95890282022-10-25 Self-supervised learning enables 3D digital subtraction angiography reconstruction from ultra-sparse 2D projection views: A multicenter study Zhao, Huangxuan Zhou, Zhenghong Wu, Feihong Xiang, Dongqiao Zhao, Hui Zhang, Wei Li, Lin Li, Zhong Huang, Jia Hu, Hongyao Liu, Chengbo Wang, Tao Liu, Wenyu Ma, Jinqiang Yang, Fan Wang, Xinggang Zheng, Chuansheng Cell Rep Med Article 3D digital subtraction angiography (DSA) reconstruction from rotational 2D projection X-ray angiography is an important basis for diagnosis and treatment of intracranial aneurysms (IAs). The gold standard requires approximately 133 different projection views for 3D reconstruction. A method to significantly reduce the radiation dosage while ensuring the reconstruction quality is yet to be developed. We propose a self-supervised learning method to realize 3D-DSA reconstruction using ultra-sparse 2D projections. 202 cases (100 from one hospital for training and testing, 102 from two other hospitals for external validation) suspected to be suffering from IAs were conducted to analyze the reconstructed images. Two radiologists scored the reconstructed images from internal and external datasets using eight projections and identified all 82 lesions with high diagnostic confidence. The radiation dosages are approximately 1/16.7 compared with the gold standard method. Our proposed method can help develop a revolutionary 3D-DSA reconstruction method for use in clinic. Elsevier 2022-10-07 /pmc/articles/PMC9589028/ /pubmed/36208630 http://dx.doi.org/10.1016/j.xcrm.2022.100775 Text en © 2022 The Authors. https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Zhao, Huangxuan
Zhou, Zhenghong
Wu, Feihong
Xiang, Dongqiao
Zhao, Hui
Zhang, Wei
Li, Lin
Li, Zhong
Huang, Jia
Hu, Hongyao
Liu, Chengbo
Wang, Tao
Liu, Wenyu
Ma, Jinqiang
Yang, Fan
Wang, Xinggang
Zheng, Chuansheng
Self-supervised learning enables 3D digital subtraction angiography reconstruction from ultra-sparse 2D projection views: A multicenter study
title Self-supervised learning enables 3D digital subtraction angiography reconstruction from ultra-sparse 2D projection views: A multicenter study
title_full Self-supervised learning enables 3D digital subtraction angiography reconstruction from ultra-sparse 2D projection views: A multicenter study
title_fullStr Self-supervised learning enables 3D digital subtraction angiography reconstruction from ultra-sparse 2D projection views: A multicenter study
title_full_unstemmed Self-supervised learning enables 3D digital subtraction angiography reconstruction from ultra-sparse 2D projection views: A multicenter study
title_short Self-supervised learning enables 3D digital subtraction angiography reconstruction from ultra-sparse 2D projection views: A multicenter study
title_sort self-supervised learning enables 3d digital subtraction angiography reconstruction from ultra-sparse 2d projection views: a multicenter study
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9589028/
https://www.ncbi.nlm.nih.gov/pubmed/36208630
http://dx.doi.org/10.1016/j.xcrm.2022.100775
work_keys_str_mv AT zhaohuangxuan selfsupervisedlearningenables3ddigitalsubtractionangiographyreconstructionfromultrasparse2dprojectionviewsamulticenterstudy
AT zhouzhenghong selfsupervisedlearningenables3ddigitalsubtractionangiographyreconstructionfromultrasparse2dprojectionviewsamulticenterstudy
AT wufeihong selfsupervisedlearningenables3ddigitalsubtractionangiographyreconstructionfromultrasparse2dprojectionviewsamulticenterstudy
AT xiangdongqiao selfsupervisedlearningenables3ddigitalsubtractionangiographyreconstructionfromultrasparse2dprojectionviewsamulticenterstudy
AT zhaohui selfsupervisedlearningenables3ddigitalsubtractionangiographyreconstructionfromultrasparse2dprojectionviewsamulticenterstudy
AT zhangwei selfsupervisedlearningenables3ddigitalsubtractionangiographyreconstructionfromultrasparse2dprojectionviewsamulticenterstudy
AT lilin selfsupervisedlearningenables3ddigitalsubtractionangiographyreconstructionfromultrasparse2dprojectionviewsamulticenterstudy
AT lizhong selfsupervisedlearningenables3ddigitalsubtractionangiographyreconstructionfromultrasparse2dprojectionviewsamulticenterstudy
AT huangjia selfsupervisedlearningenables3ddigitalsubtractionangiographyreconstructionfromultrasparse2dprojectionviewsamulticenterstudy
AT huhongyao selfsupervisedlearningenables3ddigitalsubtractionangiographyreconstructionfromultrasparse2dprojectionviewsamulticenterstudy
AT liuchengbo selfsupervisedlearningenables3ddigitalsubtractionangiographyreconstructionfromultrasparse2dprojectionviewsamulticenterstudy
AT wangtao selfsupervisedlearningenables3ddigitalsubtractionangiographyreconstructionfromultrasparse2dprojectionviewsamulticenterstudy
AT liuwenyu selfsupervisedlearningenables3ddigitalsubtractionangiographyreconstructionfromultrasparse2dprojectionviewsamulticenterstudy
AT majinqiang selfsupervisedlearningenables3ddigitalsubtractionangiographyreconstructionfromultrasparse2dprojectionviewsamulticenterstudy
AT yangfan selfsupervisedlearningenables3ddigitalsubtractionangiographyreconstructionfromultrasparse2dprojectionviewsamulticenterstudy
AT wangxinggang selfsupervisedlearningenables3ddigitalsubtractionangiographyreconstructionfromultrasparse2dprojectionviewsamulticenterstudy
AT zhengchuansheng selfsupervisedlearningenables3ddigitalsubtractionangiographyreconstructionfromultrasparse2dprojectionviewsamulticenterstudy