Cargando…
Self-supervised learning enables 3D digital subtraction angiography reconstruction from ultra-sparse 2D projection views: A multicenter study
3D digital subtraction angiography (DSA) reconstruction from rotational 2D projection X-ray angiography is an important basis for diagnosis and treatment of intracranial aneurysms (IAs). The gold standard requires approximately 133 different projection views for 3D reconstruction. A method to signif...
Autores principales: | , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9589028/ https://www.ncbi.nlm.nih.gov/pubmed/36208630 http://dx.doi.org/10.1016/j.xcrm.2022.100775 |
_version_ | 1784814207687983104 |
---|---|
author | Zhao, Huangxuan Zhou, Zhenghong Wu, Feihong Xiang, Dongqiao Zhao, Hui Zhang, Wei Li, Lin Li, Zhong Huang, Jia Hu, Hongyao Liu, Chengbo Wang, Tao Liu, Wenyu Ma, Jinqiang Yang, Fan Wang, Xinggang Zheng, Chuansheng |
author_facet | Zhao, Huangxuan Zhou, Zhenghong Wu, Feihong Xiang, Dongqiao Zhao, Hui Zhang, Wei Li, Lin Li, Zhong Huang, Jia Hu, Hongyao Liu, Chengbo Wang, Tao Liu, Wenyu Ma, Jinqiang Yang, Fan Wang, Xinggang Zheng, Chuansheng |
author_sort | Zhao, Huangxuan |
collection | PubMed |
description | 3D digital subtraction angiography (DSA) reconstruction from rotational 2D projection X-ray angiography is an important basis for diagnosis and treatment of intracranial aneurysms (IAs). The gold standard requires approximately 133 different projection views for 3D reconstruction. A method to significantly reduce the radiation dosage while ensuring the reconstruction quality is yet to be developed. We propose a self-supervised learning method to realize 3D-DSA reconstruction using ultra-sparse 2D projections. 202 cases (100 from one hospital for training and testing, 102 from two other hospitals for external validation) suspected to be suffering from IAs were conducted to analyze the reconstructed images. Two radiologists scored the reconstructed images from internal and external datasets using eight projections and identified all 82 lesions with high diagnostic confidence. The radiation dosages are approximately 1/16.7 compared with the gold standard method. Our proposed method can help develop a revolutionary 3D-DSA reconstruction method for use in clinic. |
format | Online Article Text |
id | pubmed-9589028 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-95890282022-10-25 Self-supervised learning enables 3D digital subtraction angiography reconstruction from ultra-sparse 2D projection views: A multicenter study Zhao, Huangxuan Zhou, Zhenghong Wu, Feihong Xiang, Dongqiao Zhao, Hui Zhang, Wei Li, Lin Li, Zhong Huang, Jia Hu, Hongyao Liu, Chengbo Wang, Tao Liu, Wenyu Ma, Jinqiang Yang, Fan Wang, Xinggang Zheng, Chuansheng Cell Rep Med Article 3D digital subtraction angiography (DSA) reconstruction from rotational 2D projection X-ray angiography is an important basis for diagnosis and treatment of intracranial aneurysms (IAs). The gold standard requires approximately 133 different projection views for 3D reconstruction. A method to significantly reduce the radiation dosage while ensuring the reconstruction quality is yet to be developed. We propose a self-supervised learning method to realize 3D-DSA reconstruction using ultra-sparse 2D projections. 202 cases (100 from one hospital for training and testing, 102 from two other hospitals for external validation) suspected to be suffering from IAs were conducted to analyze the reconstructed images. Two radiologists scored the reconstructed images from internal and external datasets using eight projections and identified all 82 lesions with high diagnostic confidence. The radiation dosages are approximately 1/16.7 compared with the gold standard method. Our proposed method can help develop a revolutionary 3D-DSA reconstruction method for use in clinic. Elsevier 2022-10-07 /pmc/articles/PMC9589028/ /pubmed/36208630 http://dx.doi.org/10.1016/j.xcrm.2022.100775 Text en © 2022 The Authors. https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Zhao, Huangxuan Zhou, Zhenghong Wu, Feihong Xiang, Dongqiao Zhao, Hui Zhang, Wei Li, Lin Li, Zhong Huang, Jia Hu, Hongyao Liu, Chengbo Wang, Tao Liu, Wenyu Ma, Jinqiang Yang, Fan Wang, Xinggang Zheng, Chuansheng Self-supervised learning enables 3D digital subtraction angiography reconstruction from ultra-sparse 2D projection views: A multicenter study |
title | Self-supervised learning enables 3D digital subtraction angiography reconstruction from ultra-sparse 2D projection views: A multicenter study |
title_full | Self-supervised learning enables 3D digital subtraction angiography reconstruction from ultra-sparse 2D projection views: A multicenter study |
title_fullStr | Self-supervised learning enables 3D digital subtraction angiography reconstruction from ultra-sparse 2D projection views: A multicenter study |
title_full_unstemmed | Self-supervised learning enables 3D digital subtraction angiography reconstruction from ultra-sparse 2D projection views: A multicenter study |
title_short | Self-supervised learning enables 3D digital subtraction angiography reconstruction from ultra-sparse 2D projection views: A multicenter study |
title_sort | self-supervised learning enables 3d digital subtraction angiography reconstruction from ultra-sparse 2d projection views: a multicenter study |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9589028/ https://www.ncbi.nlm.nih.gov/pubmed/36208630 http://dx.doi.org/10.1016/j.xcrm.2022.100775 |
work_keys_str_mv | AT zhaohuangxuan selfsupervisedlearningenables3ddigitalsubtractionangiographyreconstructionfromultrasparse2dprojectionviewsamulticenterstudy AT zhouzhenghong selfsupervisedlearningenables3ddigitalsubtractionangiographyreconstructionfromultrasparse2dprojectionviewsamulticenterstudy AT wufeihong selfsupervisedlearningenables3ddigitalsubtractionangiographyreconstructionfromultrasparse2dprojectionviewsamulticenterstudy AT xiangdongqiao selfsupervisedlearningenables3ddigitalsubtractionangiographyreconstructionfromultrasparse2dprojectionviewsamulticenterstudy AT zhaohui selfsupervisedlearningenables3ddigitalsubtractionangiographyreconstructionfromultrasparse2dprojectionviewsamulticenterstudy AT zhangwei selfsupervisedlearningenables3ddigitalsubtractionangiographyreconstructionfromultrasparse2dprojectionviewsamulticenterstudy AT lilin selfsupervisedlearningenables3ddigitalsubtractionangiographyreconstructionfromultrasparse2dprojectionviewsamulticenterstudy AT lizhong selfsupervisedlearningenables3ddigitalsubtractionangiographyreconstructionfromultrasparse2dprojectionviewsamulticenterstudy AT huangjia selfsupervisedlearningenables3ddigitalsubtractionangiographyreconstructionfromultrasparse2dprojectionviewsamulticenterstudy AT huhongyao selfsupervisedlearningenables3ddigitalsubtractionangiographyreconstructionfromultrasparse2dprojectionviewsamulticenterstudy AT liuchengbo selfsupervisedlearningenables3ddigitalsubtractionangiographyreconstructionfromultrasparse2dprojectionviewsamulticenterstudy AT wangtao selfsupervisedlearningenables3ddigitalsubtractionangiographyreconstructionfromultrasparse2dprojectionviewsamulticenterstudy AT liuwenyu selfsupervisedlearningenables3ddigitalsubtractionangiographyreconstructionfromultrasparse2dprojectionviewsamulticenterstudy AT majinqiang selfsupervisedlearningenables3ddigitalsubtractionangiographyreconstructionfromultrasparse2dprojectionviewsamulticenterstudy AT yangfan selfsupervisedlearningenables3ddigitalsubtractionangiographyreconstructionfromultrasparse2dprojectionviewsamulticenterstudy AT wangxinggang selfsupervisedlearningenables3ddigitalsubtractionangiographyreconstructionfromultrasparse2dprojectionviewsamulticenterstudy AT zhengchuansheng selfsupervisedlearningenables3ddigitalsubtractionangiographyreconstructionfromultrasparse2dprojectionviewsamulticenterstudy |