Cargando…
Decision support by machine learning systems for acute management of severely injured patients: A systematic review
INTRODUCTION: Treating severely injured patients requires numerous critical decisions within short intervals in a highly complex situation. The coordination of a trauma team in this setting has been shown to be associated with multiple procedural errors, even of experienced care teams. Machine learn...
Autores principales: | Baur, David, Gehlen, Tobias, Scherer, Julian, Back, David Alexander, Tsitsilonis, Serafeim, Kabir, Koroush, Osterhoff, Georg |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9589228/ https://www.ncbi.nlm.nih.gov/pubmed/36299574 http://dx.doi.org/10.3389/fsurg.2022.924810 |
Ejemplares similares
-
Ökonomische Aspekte der Digitalisierung in Orthopädie und Unfallchirurgie
por: Pförringer, Dominik, et al.
Publicado: (2020) -
Retrospective analysis of treatment decisions and clinical outcome of Lisfranc injuries: operative vs. conservative treatment
por: Graef, Josefine, et al.
Publicado: (2021) -
Clinical and Patient-Related Outcome After Stabilization of Dorsal Pelvic Ring Fractures: A Retrospective Study Comparing Transiliac Fixator (TIFI) and Spinopelvic Fixation (SPF)
por: Seemann, Ricarda Johanna, et al.
Publicado: (2021) -
Digital implications for human resource management in surgical departments
por: Back, David Alexander, et al.
Publicado: (2021) -
Proposal of a New Rating Concept for Digital Health Applications in Orthopedics and Traumatology
por: Scherer, Julian, et al.
Publicado: (2022)