Cargando…
Resting-state EEG-based convolutional neural network for the diagnosis of depression and its severity
Purpose: The study aimed to assess the value of the resting-state electroencephalogram (EEG)-based convolutional neural network (CNN) method for the diagnosis of depression and its severity in order to better serve depressed patients and at-risk populations. Methods: In this study, we used the resti...
Autores principales: | Li, Mengqian, Liu, Yuan, Liu, Yan, Pu, Changqin, Yin, Ruocheng, Zeng, Ziqiang, Deng, Libin, Wang, Xing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9589234/ https://www.ncbi.nlm.nih.gov/pubmed/36299253 http://dx.doi.org/10.3389/fphys.2022.956254 |
Ejemplares similares
-
Machine learning approaches for diagnosing depression using EEG: A review
por: Liu, Yuan, et al.
Publicado: (2022) -
EEG diagnosis of depression based on multi-channel data fusion and clipping augmentation and convolutional neural network
por: Wang, Baiyang, et al.
Publicado: (2022) -
Computer-Aided Diagnosis System of Fetal Hypoxia Incorporating Recurrence Plot With Convolutional Neural Network
por: Zhao, Zhidong, et al.
Publicado: (2019) -
Multi-scale convolutional recurrent neural network for psychiatric disorder identification in resting-state EEG
por: Yan, Weizheng, et al.
Publicado: (2023) -
Exercise fatigue diagnosis method based on short-time Fourier transform and convolutional neural network
por: Zhu, Haiyan, et al.
Publicado: (2022)