Cargando…

Introduction of graphene oxide-supported multilayer-quantum dots nanofilm into multiplex lateral flow immunoassay: A rapid and ultrasensitive point-of-care testing technique for multiple respiratory viruses

A lateral flow immunoassay (LFA) biosensor that allows the sensitive and accurate identification of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and other common respiratory viruses remains highly desired in the face of the coronavirus disease 2019 pandemic. Here, we propose a multip...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Wenqi, Yang, Xingsheng, Rong, Zhen, Tu, Zhijie, Zhang, Xiaochang, Gu, Bing, Wang, Chongwen, Wang, Shengqi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Tsinghua University Press 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9589541/
https://www.ncbi.nlm.nih.gov/pubmed/36312892
http://dx.doi.org/10.1007/s12274-022-5043-6
Descripción
Sumario:A lateral flow immunoassay (LFA) biosensor that allows the sensitive and accurate identification of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and other common respiratory viruses remains highly desired in the face of the coronavirus disease 2019 pandemic. Here, we propose a multiplex LFA method for the on-site, rapid, and highly sensitive screening of multiple respiratory viruses, using a multilayered film-like fluorescent tag as the performance enhancement and signal amplification tool. This film-like three-dimensional (3D) tag was prepared through the layer-by-layer assembly of highly photostable CdSe@ZnS−COOH quantum dots (QDs) onto the surfaces of monolayer graphene oxide nanosheets, which can provide larger reaction interfaces and specific active surface areas, higher QD loads, and better luminescence and dispersibility than traditional spherical fluorescent microspheres for LFA applications. The constructed fluorescent LFA biosensor can simultaneously and sensitively quantify SARS-CoV-2, influenza A virus, and human adenovirus with low detection limits (8 pg/mL, 488 copies/mL, and 471 copies/mL), short assay time (15 min), good reproducibility, and high accuracy. Moreover, our proposed assay has great potential for the early diagnosis of respiratory virus infections given its robustness when validated in real saliva samples. [Image: see text] ELECTRONIC SUPPLEMENTARY MATERIAL: Supplementary material (Section S1 Experimental section, Section S2 Calculation of the maximum number of QDs on the GO@TQD nanofilm, Section S3 Optimization of the LFA method, and Figs. S1–S17 mentioned in the main text) is available in the online version of this article at 10.1007/s12274-022-5043-6.