Cargando…
TextConvoNet: a convolutional neural network based architecture for text classification
This paper presents, TextConvoNet, a novel Convolutional Neural Network (CNN) based architecture for binary and multi-class text classification problems. Most of the existing CNN-based models use one-dimensional convolving filters, where each filter specializes in extracting n-grams features of a pa...
Autores principales: | Soni, Sanskar, Chouhan, Satyendra Singh, Rathore, Santosh Singh |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9589611/ https://www.ncbi.nlm.nih.gov/pubmed/36310755 http://dx.doi.org/10.1007/s10489-022-04221-9 |
Ejemplares similares
-
Predictive modeling for suspicious content identification on Twitter
por: Gangwar, Surendra Singh, et al.
Publicado: (2022) -
Clinical text classification with rule-based features and knowledge-guided convolutional neural networks
por: Yao, Liang, et al.
Publicado: (2019) -
A Framework for Text Classification Using Evolutionary Contiguous Convolutional Neural Network and Swarm Based Deep Neural Network
por: Prabhakar, Sunil Kumar, et al.
Publicado: (2022) -
Attention enhanced capsule network for text classification by encoding syntactic dependency trees with graph convolutional neural network
por: Jia, Xudong, et al.
Publicado: (2022) -
Association Mining of Near Misses in Hydropower Engineering Construction Based on Convolutional Neural Network Text Classification
por: Chen, Shu, et al.
Publicado: (2022)