Cargando…
Classification of audio signals using spectrogram surfaces and extrinsic distortion measures
Representation of one-dimensional (1D) signals as surfaces and higher-dimensional manifolds reveals geometric structures that can enhance assessment of signal similarity and classification of large sets of signals. Motivated by this observation, we propose a novel robust algorithm for extraction of...
Autores principales: | Levy, Jeremy, Naitsat, Alexander, Zeevi, Yehoshua Y. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9589786/ https://www.ncbi.nlm.nih.gov/pubmed/36311995 http://dx.doi.org/10.1186/s13634-022-00933-9 |
Ejemplares similares
-
An Empathy Evaluation System Using Spectrogram Image Features of Audio
por: Zhang, Jing, et al.
Publicado: (2021) -
Railway Track Inspection Using Deep Learning Based on Audio to Spectrogram Conversion: An on-the-Fly Approach
por: Hashmi, Muhammad Shadab Alam, et al.
Publicado: (2022) -
Quantum-assisted distortion-free audio signal sensing
por: Zhang, Chen, et al.
Publicado: (2022) -
The use of spectrograms improves the classification of wheezes and crackles in an educational setting
por: Aviles-Solis, J. C., et al.
Publicado: (2020) -
Electrocardiogram classification using TSST-based spectrogram and ConViT
por: Bing, Pingping, et al.
Publicado: (2022)