Cargando…
Modeling and Solution of Reaction–Diffusion Equations by Using the Quadrature and Singular Convolution Methods
In the present work, polynomial, discrete singular convolution and sinc quadrature techniques are employed as the new techniques to derive accurate and efficient numerical solutions for the reaction–diffusion equations. Three models, Fitzhugh-Nagumo, Newell–Whitehead–Segel, and tumor growth models,...
Autores principales: | Ragb, O., Salah, Mohamed, Matbuly, M. S., Ersoy, H., Civalek, O. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9589812/ https://www.ncbi.nlm.nih.gov/pubmed/36311480 http://dx.doi.org/10.1007/s13369-022-07367-3 |
Ejemplares similares
-
Vibration analysis of structural elements using differential quadrature method
por: Nassar, Mohamed, et al.
Publicado: (2013) -
Free vibration of a piezoelectric nanobeam resting on nonlinear Winkler-Pasternak foundation by quadrature methods
por: Ragb, Ola, et al.
Publicado: (2019) -
Spline function approximations to the solution of singular Volterra integral equations of the second kind
por: El-Tom, M E A
Publicado: (1974) -
Lumped element quadrature hybrids
por: Andrews, David
Publicado: (2006) -
Singular solutions in plasticity
por: Alexandrov, Sergei
Publicado: (2017)