Cargando…
Estimation of best corrected visual acuity based on deep neural network
In this study, we investigated a convolutional neural network (CNN)-based framework for the estimation of the best-corrected visual acuity (BCVA) from fundus images. First, we collected 53,318 fundus photographs from the Gyeongsang National University Changwon Hospital, where each fundus photograph...
Autores principales: | Lee, Woongsup, Kim, Jin Hyun, Lee, Seongjin, Kim, Kyonghoon, Kang, Tae Seen, Han, Yong Seop |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9589880/ https://www.ncbi.nlm.nih.gov/pubmed/36280678 http://dx.doi.org/10.1038/s41598-022-22586-2 |
Ejemplares similares
-
Author Correction: Asymmetry between right and left fundus images identified using convolutional neural networks
por: Kang, Tae Seen, et al.
Publicado: (2022) -
Asymmetry between right and left fundus images identified using convolutional neural networks
por: Kang, Tae Seen, et al.
Publicado: (2022) -
Development of fully automated anterior chamber cell analysis based on image software
por: Kang, Tae Seen, et al.
Publicado: (2021) -
Development of Deep Learning Models to Predict Best-Corrected Visual Acuity from Optical Coherence Tomography
por: Kawczynski, Michael G., et al.
Publicado: (2020) -
Comparing Telephone Survey Responses to Best-Corrected Visual Acuity to Estimate the Accuracy of Identifying Vision Loss: Validation Study
por: Wittenborn, John, et al.
Publicado: (2023)