Cargando…
Electrocardiogram classification using TSST-based spectrogram and ConViT
As an important auxiliary tool of arrhythmia diagnosis, Electrocardiogram (ECG) is frequently utilized to detect a variety of cardiovascular diseases caused by arrhythmia, such as cardiac mechanical infarction. In the past few years, the classification of ECG has always been a challenging problem. T...
Autores principales: | Bing, Pingping, Liu, Yang, Liu, Wei, Zhou, Jun, Zhu, Lemei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9590285/ https://www.ncbi.nlm.nih.gov/pubmed/36299867 http://dx.doi.org/10.3389/fcvm.2022.983543 |
Ejemplares similares
-
Dr. Jacinto Convit (1913–2014)
por: Paniz Mondolfi, Alberto E., et al.
Publicado: (2014) -
Toxicity evaluation of ConvitVax breast cancer immunotherapy
por: Duarte C., María A., et al.
Publicado: (2021) -
Structural Anomalies Detection from Electrocardiogram (ECG) with Spectrogram and Handcrafted Features
por: Li, Hongzu, et al.
Publicado: (2022) -
Deep learning assessment of left ventricular hypertrophy based on electrocardiogram
por: Zhao, Xiaoli, et al.
Publicado: (2022) -
Sleep Apnea Classification Algorithm Development Using a Machine-Learning Framework and Bag-of-Features Derived from Electrocardiogram Spectrograms
por: Lin, Cheng-Yu, et al.
Publicado: (2021)