Cargando…
Alternative or cytochrome? Respiratory pathways in traps of aquatic carnivorous bladderwort Utricularia reflexa
Carnivorous plants of the genus Utricularia (bladderwort) form modified leaves into suction bladder traps. The bladders are metabolically active plant tissue with high rates of mitochondrial respiration (R(D)). In general, plants possess two mitochondrial electron transport pathways to reduce oxygen...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Taylor & Francis
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9590445/ https://www.ncbi.nlm.nih.gov/pubmed/36266991 http://dx.doi.org/10.1080/15592324.2022.2134967 |
_version_ | 1784814513586962432 |
---|---|
author | Pavlovič, Andrej Jakšová, Jana Hrivňacký, Martin Adamec, Lubomír |
author_facet | Pavlovič, Andrej Jakšová, Jana Hrivňacký, Martin Adamec, Lubomír |
author_sort | Pavlovič, Andrej |
collection | PubMed |
description | Carnivorous plants of the genus Utricularia (bladderwort) form modified leaves into suction bladder traps. The bladders are metabolically active plant tissue with high rates of mitochondrial respiration (R(D)). In general, plants possess two mitochondrial electron transport pathways to reduce oxygen to water: cytochrome and an alternative. Due to the high metabolic rate in the bladders, it is tempting to assume that the bladders prefer the cytochrome c oxidative pathway. Surprisingly, we revealed that alternative oxidase (AOX), which yields only a little ATP, is much more abundant in the bladders of Utricularia reflexa in comparison with the shoots. This pattern is similar to the carnivorous plants with passive pitcher traps (e.g. Sarracenia, Nepenthes) and seems to be widespread across many carnivorous taxa. The exact role of AOX in the traps of carnivorous plants remains to be investigated. |
format | Online Article Text |
id | pubmed-9590445 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Taylor & Francis |
record_format | MEDLINE/PubMed |
spelling | pubmed-95904452022-10-25 Alternative or cytochrome? Respiratory pathways in traps of aquatic carnivorous bladderwort Utricularia reflexa Pavlovič, Andrej Jakšová, Jana Hrivňacký, Martin Adamec, Lubomír Plant Signal Behav Short Communication Carnivorous plants of the genus Utricularia (bladderwort) form modified leaves into suction bladder traps. The bladders are metabolically active plant tissue with high rates of mitochondrial respiration (R(D)). In general, plants possess two mitochondrial electron transport pathways to reduce oxygen to water: cytochrome and an alternative. Due to the high metabolic rate in the bladders, it is tempting to assume that the bladders prefer the cytochrome c oxidative pathway. Surprisingly, we revealed that alternative oxidase (AOX), which yields only a little ATP, is much more abundant in the bladders of Utricularia reflexa in comparison with the shoots. This pattern is similar to the carnivorous plants with passive pitcher traps (e.g. Sarracenia, Nepenthes) and seems to be widespread across many carnivorous taxa. The exact role of AOX in the traps of carnivorous plants remains to be investigated. Taylor & Francis 2022-10-20 /pmc/articles/PMC9590445/ /pubmed/36266991 http://dx.doi.org/10.1080/15592324.2022.2134967 Text en © 2022 The Author(s). Published with license by Taylor & Francis Group, LLC. https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Short Communication Pavlovič, Andrej Jakšová, Jana Hrivňacký, Martin Adamec, Lubomír Alternative or cytochrome? Respiratory pathways in traps of aquatic carnivorous bladderwort Utricularia reflexa |
title | Alternative or cytochrome? Respiratory pathways in traps of aquatic carnivorous bladderwort Utricularia reflexa |
title_full | Alternative or cytochrome? Respiratory pathways in traps of aquatic carnivorous bladderwort Utricularia reflexa |
title_fullStr | Alternative or cytochrome? Respiratory pathways in traps of aquatic carnivorous bladderwort Utricularia reflexa |
title_full_unstemmed | Alternative or cytochrome? Respiratory pathways in traps of aquatic carnivorous bladderwort Utricularia reflexa |
title_short | Alternative or cytochrome? Respiratory pathways in traps of aquatic carnivorous bladderwort Utricularia reflexa |
title_sort | alternative or cytochrome? respiratory pathways in traps of aquatic carnivorous bladderwort utricularia reflexa |
topic | Short Communication |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9590445/ https://www.ncbi.nlm.nih.gov/pubmed/36266991 http://dx.doi.org/10.1080/15592324.2022.2134967 |
work_keys_str_mv | AT pavlovicandrej alternativeorcytochromerespiratorypathwaysintrapsofaquaticcarnivorousbladderwortutriculariareflexa AT jaksovajana alternativeorcytochromerespiratorypathwaysintrapsofaquaticcarnivorousbladderwortutriculariareflexa AT hrivnackymartin alternativeorcytochromerespiratorypathwaysintrapsofaquaticcarnivorousbladderwortutriculariareflexa AT adameclubomir alternativeorcytochromerespiratorypathwaysintrapsofaquaticcarnivorousbladderwortutriculariareflexa |