Cargando…
Unique estimation in EEG analysis by the ordering ICA
Independent Component Analysis (ICA) is a method for solving blind source separation problems. Because ICA only needs weak assumptions to estimate the unknown sources from only the observed signals, it is suitable for Electroencephalography (EEG) analysis. A serious disadvantage of the traditional I...
Autores principales: | Matsuda, Yoshitatsu, Yamaguchi, Kazunori |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9591063/ https://www.ncbi.nlm.nih.gov/pubmed/36279275 http://dx.doi.org/10.1371/journal.pone.0276680 |
Ejemplares similares
-
PWC-ICA: A Method for Stationary Ordered Blind Source Separation with Application to EEG
por: Ball, Kenneth, et al.
Publicado: (2016) -
CUDAICA: GPU Optimization of Infomax-ICA EEG Analysis
por: Raimondo, Federico, et al.
Publicado: (2012) -
Exploring the temporal dynamics of speech production with EEG and group ICA
por: Janssen, Niels, et al.
Publicado: (2020) -
ICA-Based Imagined Conceptual Words Classification on EEG Signals
por: Imani, Ehsan, et al.
Publicado: (2017) -
Automatic classification of ICA components from infant EEG using MARA
por: Marriott Haresign, I., et al.
Publicado: (2021)