Cargando…

Structure of the HOPS tethering complex, a lysosomal membrane fusion machinery

Lysosomes are essential for cellular recycling, nutrient signaling, autophagy, and pathogenic bacteria and viruses invasion. Lysosomal fusion is fundamental to cell survival and requires HOPS, a conserved heterohexameric tethering complex. On the membranes to be fused, HOPS binds small membrane-asso...

Descripción completa

Detalles Bibliográficos
Autores principales: Shvarev, Dmitry, Schoppe, Jannis, König, Caroline, Perz, Angela, Füllbrunn, Nadia, Kiontke, Stephan, Langemeyer, Lars, Januliene, Dovile, Schnelle, Kilian, Kümmel, Daniel, Fröhlich, Florian, Moeller, Arne, Ungermann, Christian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: eLife Sciences Publications, Ltd 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9592082/
https://www.ncbi.nlm.nih.gov/pubmed/36098503
http://dx.doi.org/10.7554/eLife.80901
Descripción
Sumario:Lysosomes are essential for cellular recycling, nutrient signaling, autophagy, and pathogenic bacteria and viruses invasion. Lysosomal fusion is fundamental to cell survival and requires HOPS, a conserved heterohexameric tethering complex. On the membranes to be fused, HOPS binds small membrane-associated GTPases and assembles SNAREs for fusion, but how the complex fulfills its function remained speculative. Here, we used cryo-electron microscopy to reveal the structure of HOPS. Unlike previously reported, significant flexibility of HOPS is confined to its extremities, where GTPase binding occurs. The SNARE-binding module is firmly attached to the core, therefore, ideally positioned between the membranes to catalyze fusion. Our data suggest a model for how HOPS fulfills its dual functionality of tethering and fusion and indicate why it is an essential part of the membrane fusion machinery.