Cargando…
Supervised and Semisupervised Manifold Embedded Knowledge Transfer in Motor Imagery-Based BCI
A long calibration procedure limits the use in practice for a motor imagery (MI)-based brain-computer interface (BCI) system. To tackle this problem, we consider supervised and semisupervised transfer learning. However, it is a challenge for them to cope with high intersession/subject variability in...
Autores principales: | Xu, Yilu, Yin, Hua, Yi, Wenlong, Huang, Xin, Jian, Wenjuan, Wang, Canhua, Hu, Ronghua |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9592202/ https://www.ncbi.nlm.nih.gov/pubmed/36299440 http://dx.doi.org/10.1155/2022/1603104 |
Ejemplares similares
-
A Semisupervised Support Vector Machines Algorithm for BCI Systems
por: Qin, Jianzhao, et al.
Publicado: (2007) -
Task Transfer Learning for EEG Classification in Motor Imagery-Based BCI System
por: Zheng, Xuanci, et al.
Publicado: (2020) -
Enhancement of ELM by Clustering Discrimination Manifold Regularization and Multiobjective FOA for Semisupervised Classification
por: Ye, Qing, et al.
Publicado: (2015) -
Multisubject Learning for Common Spatial Patterns in Motor-Imagery BCI
por: Devlaminck, Dieter, et al.
Publicado: (2011) -
Motor Imagery Under Distraction— An Open Access BCI Dataset
por: Brandl, Stephanie, et al.
Publicado: (2020)