Cargando…
Segmentation Algorithm of Magnetic Resonance Imaging Glioma under Fully Convolutional Densely Connected Convolutional Networks
This work focused on the application value of magnetic resonance imaging (MRI) image segmentation algorithm based on fully convolutional DenseNet neural network (FCDNN) in glioma diagnosis. In this work, based on the fully convolutional DenseNet algorithm, a new MRI image automatic semantic segmenta...
Autores principales: | Dong, Jie, Zhang, Yueying, Meng, Yun, Yang, Tingxiao, Ma, Wei, Wu, Huixin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9592238/ https://www.ncbi.nlm.nih.gov/pubmed/36299467 http://dx.doi.org/10.1155/2022/8619690 |
Ejemplares similares
-
Retracted: Segmentation Algorithm of Magnetic Resonance Imaging Glioma under Fully Convolutional Densely Connected Convolutional Networks
por: International, Stem Cells
Publicado: (2023) -
Attention-Guided Network with Densely Connected Convolution for Skin Lesion Segmentation
por: Tao, Shengxin, et al.
Publicado: (2021) -
Fully Convolutional DenseNet with Multiscale Context for Automated Breast Tumor Segmentation
por: Hai, Jinjin, et al.
Publicado: (2019) -
N-Net: A novel dense fully convolutional neural network for thyroid nodule segmentation
por: Nie, Xingqing, et al.
Publicado: (2022) -
A-DenseUNet: Adaptive Densely Connected UNet for Polyp Segmentation in Colonoscopy Images with Atrous Convolution
por: Safarov, Sirojbek, et al.
Publicado: (2021)