Cargando…

Feasibility of Using High-Resolution Computed Tomography Features for Invasiveness Differentiation of Malignant Nodules Manifesting as Ground-Glass Nodules

Ground-glass nodule (GGN)-like adenocarcinoma is a special subtype of lung cancer. The invasiveness of the nodule correlates well with the patient's prognosis. This study aimed to establish a radiomic model for invasiveness differentiation of malignant nodules manifesting as ground glass on hig...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Xinyue, Yao, Benbo, Li, Juan, Liang, Chunxiao, Qi, Rui, Yu, Jianqun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9592239/
https://www.ncbi.nlm.nih.gov/pubmed/36299411
http://dx.doi.org/10.1155/2022/2671772
Descripción
Sumario:Ground-glass nodule (GGN)-like adenocarcinoma is a special subtype of lung cancer. The invasiveness of the nodule correlates well with the patient's prognosis. This study aimed to establish a radiomic model for invasiveness differentiation of malignant nodules manifesting as ground glass on high-resolution computed tomography (HRCT). Between January 2014 and July 2019, 276 pulmonary nodules manifesting as GGNs on preoperative HRCTs, whose histological results were available, were collected. The nodules were randomly classified into training (n = 221) and independent testing (n = 55) cohorts. Three logistic models using features derived from HRCT were fit in the training cohort and validated in both aforementioned cohorts for invasive adenocarcinoma and preinvasive-minimally invasive adenocarcinoma (MIA) differentiation. The model with the best performance was presented as a nomogram and was validated using a calibration curve before performing a decision curve analysis. The benefit of using the proposed model was also shown by groups of management strategies recommended by The Fleischner Society. The combined model showed the best differentiation performance (area under the curve (AUC), training set = 0.89, and testing set = 0.92). The quantitative texture model showed better performance (AUC, training set = 0.87, and testing set = 0.91) than the semantic model (AUC, training set = 0.83, and testing set = 0.79). Of the 94 type 2 nodules that were IACs, 66 were identified by this model. Models using features derived from imaging are effective for differentiating between preinvasive-MIA and IACs among lung adenocarcinomas appearing as GGNs on CT images.