Cargando…

Characterization of the exopolymer-producing Pseudoalteromonas sp. S8-8 from Antarctic sediment

ABSTRACT: A synergistic approach using cultivation methods, chemical, and bioinformatic analyses was applied to explore the potential of Pseudoalteromonas sp. S8-8 in the production of extracellular polymeric substances (EPSs) and the possible physiological traits related to heavy metal and/or antib...

Descripción completa

Detalles Bibliográficos
Autores principales: Rizzo, Carmen, Perrin, Elena, Poli, Annarita, Finore, Ilaria, Fani, Renato, Lo Giudice, Angelina
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9592659/
https://www.ncbi.nlm.nih.gov/pubmed/36156161
http://dx.doi.org/10.1007/s00253-022-12180-x
Descripción
Sumario:ABSTRACT: A synergistic approach using cultivation methods, chemical, and bioinformatic analyses was applied to explore the potential of Pseudoalteromonas sp. S8-8 in the production of extracellular polymeric substances (EPSs) and the possible physiological traits related to heavy metal and/or antibiotic resistance. The effects of different parameters (carbon source, carbon source concentration, temperature, pH and NaCl supplement) were tested to ensure the optimization of growth conditions for EPS production by the strain S8-8. The highest yield of EPS was obtained during growth in culture medium supplemented with glucose (final concentration 2%) and NaCl (final concentration 3%), at 15 °C and pH 7. The EPS was mainly composed of carbohydrates (35%), followed by proteins and uronic acids (2.5 and 2.77%, respectively) and showed a monosaccharidic composition of glucose: mannose: galactosamine: galactose in the relative molar proportions of 1:0.7:0.5:0.4, as showed by the HPAE-PAD analysis. The detection of specific molecular groups (sulfates and uronic acid content) supported the interesting properties of EPSs, i.e. the emulsifying and cryoprotective action, heavy metal chelation, with interesting implication in bioremediation and biomedical fields. The analysis of the genome allowed to identify a cluster of genes involved in cellulose biosynthesis, and two additional gene clusters putatively involved in EPS biosynthesis. KEY POINTS: • A cold-adapted Pseudoalteromonas strain was investigated for EPS production. • The EPS showed emulsifying, cryoprotective, and heavy metal chelation functions. • Three gene clusters putatively involved in EPS biosynthesis were evidenced by genomic insights. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00253-022-12180-x.