Cargando…
Random forest classifier improving phenylketonuria screening performance in two Chinese populations
Phenylketonuria (PKU) is a genetic disorder with amino acid metabolic defect, which does great harms to the development of newborns and children. Early diagnosis and treatment can effectively prevent the disease progression. Here we developed a PKU screening model using random forest classifier (RFC...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9592754/ https://www.ncbi.nlm.nih.gov/pubmed/36304929 http://dx.doi.org/10.3389/fmolb.2022.986556 |
_version_ | 1784814999323017216 |
---|---|
author | Song, Yingnan Yin, Zhe Zhang, Chuan Hao, Shengju Li, Haibo Wang, Shifan Yang, Xiangchun Li, Qiong Zhuang, Danyan Zhang, Xinyuan Cao, Zongfu Ma, Xu |
author_facet | Song, Yingnan Yin, Zhe Zhang, Chuan Hao, Shengju Li, Haibo Wang, Shifan Yang, Xiangchun Li, Qiong Zhuang, Danyan Zhang, Xinyuan Cao, Zongfu Ma, Xu |
author_sort | Song, Yingnan |
collection | PubMed |
description | Phenylketonuria (PKU) is a genetic disorder with amino acid metabolic defect, which does great harms to the development of newborns and children. Early diagnosis and treatment can effectively prevent the disease progression. Here we developed a PKU screening model using random forest classifier (RFC) to improve PKU screening performance with excellent sensitivity, false positive rate (FPR) and positive predictive value (PPV) in all the validation dataset and two testing Chinese populations. RFC represented outstanding advantages comparing several different classification models based on machine learning and the traditional logistic regression model. RFC is promising to be applied to neonatal PKU screening. |
format | Online Article Text |
id | pubmed-9592754 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-95927542022-10-26 Random forest classifier improving phenylketonuria screening performance in two Chinese populations Song, Yingnan Yin, Zhe Zhang, Chuan Hao, Shengju Li, Haibo Wang, Shifan Yang, Xiangchun Li, Qiong Zhuang, Danyan Zhang, Xinyuan Cao, Zongfu Ma, Xu Front Mol Biosci Molecular Biosciences Phenylketonuria (PKU) is a genetic disorder with amino acid metabolic defect, which does great harms to the development of newborns and children. Early diagnosis and treatment can effectively prevent the disease progression. Here we developed a PKU screening model using random forest classifier (RFC) to improve PKU screening performance with excellent sensitivity, false positive rate (FPR) and positive predictive value (PPV) in all the validation dataset and two testing Chinese populations. RFC represented outstanding advantages comparing several different classification models based on machine learning and the traditional logistic regression model. RFC is promising to be applied to neonatal PKU screening. Frontiers Media S.A. 2022-10-11 /pmc/articles/PMC9592754/ /pubmed/36304929 http://dx.doi.org/10.3389/fmolb.2022.986556 Text en Copyright © 2022 Song, Yin, Zhang, Hao, Li, Wang, Yang, Li, Zhuang, Zhang, Cao and Ma. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Molecular Biosciences Song, Yingnan Yin, Zhe Zhang, Chuan Hao, Shengju Li, Haibo Wang, Shifan Yang, Xiangchun Li, Qiong Zhuang, Danyan Zhang, Xinyuan Cao, Zongfu Ma, Xu Random forest classifier improving phenylketonuria screening performance in two Chinese populations |
title | Random forest classifier improving phenylketonuria screening performance in two Chinese populations |
title_full | Random forest classifier improving phenylketonuria screening performance in two Chinese populations |
title_fullStr | Random forest classifier improving phenylketonuria screening performance in two Chinese populations |
title_full_unstemmed | Random forest classifier improving phenylketonuria screening performance in two Chinese populations |
title_short | Random forest classifier improving phenylketonuria screening performance in two Chinese populations |
title_sort | random forest classifier improving phenylketonuria screening performance in two chinese populations |
topic | Molecular Biosciences |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9592754/ https://www.ncbi.nlm.nih.gov/pubmed/36304929 http://dx.doi.org/10.3389/fmolb.2022.986556 |
work_keys_str_mv | AT songyingnan randomforestclassifierimprovingphenylketonuriascreeningperformanceintwochinesepopulations AT yinzhe randomforestclassifierimprovingphenylketonuriascreeningperformanceintwochinesepopulations AT zhangchuan randomforestclassifierimprovingphenylketonuriascreeningperformanceintwochinesepopulations AT haoshengju randomforestclassifierimprovingphenylketonuriascreeningperformanceintwochinesepopulations AT lihaibo randomforestclassifierimprovingphenylketonuriascreeningperformanceintwochinesepopulations AT wangshifan randomforestclassifierimprovingphenylketonuriascreeningperformanceintwochinesepopulations AT yangxiangchun randomforestclassifierimprovingphenylketonuriascreeningperformanceintwochinesepopulations AT liqiong randomforestclassifierimprovingphenylketonuriascreeningperformanceintwochinesepopulations AT zhuangdanyan randomforestclassifierimprovingphenylketonuriascreeningperformanceintwochinesepopulations AT zhangxinyuan randomforestclassifierimprovingphenylketonuriascreeningperformanceintwochinesepopulations AT caozongfu randomforestclassifierimprovingphenylketonuriascreeningperformanceintwochinesepopulations AT maxu randomforestclassifierimprovingphenylketonuriascreeningperformanceintwochinesepopulations |