Cargando…

Random forest classifier improving phenylketonuria screening performance in two Chinese populations

Phenylketonuria (PKU) is a genetic disorder with amino acid metabolic defect, which does great harms to the development of newborns and children. Early diagnosis and treatment can effectively prevent the disease progression. Here we developed a PKU screening model using random forest classifier (RFC...

Descripción completa

Detalles Bibliográficos
Autores principales: Song, Yingnan, Yin, Zhe, Zhang, Chuan, Hao, Shengju, Li, Haibo, Wang, Shifan, Yang, Xiangchun, Li, Qiong, Zhuang, Danyan, Zhang, Xinyuan, Cao, Zongfu, Ma, Xu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9592754/
https://www.ncbi.nlm.nih.gov/pubmed/36304929
http://dx.doi.org/10.3389/fmolb.2022.986556
_version_ 1784814999323017216
author Song, Yingnan
Yin, Zhe
Zhang, Chuan
Hao, Shengju
Li, Haibo
Wang, Shifan
Yang, Xiangchun
Li, Qiong
Zhuang, Danyan
Zhang, Xinyuan
Cao, Zongfu
Ma, Xu
author_facet Song, Yingnan
Yin, Zhe
Zhang, Chuan
Hao, Shengju
Li, Haibo
Wang, Shifan
Yang, Xiangchun
Li, Qiong
Zhuang, Danyan
Zhang, Xinyuan
Cao, Zongfu
Ma, Xu
author_sort Song, Yingnan
collection PubMed
description Phenylketonuria (PKU) is a genetic disorder with amino acid metabolic defect, which does great harms to the development of newborns and children. Early diagnosis and treatment can effectively prevent the disease progression. Here we developed a PKU screening model using random forest classifier (RFC) to improve PKU screening performance with excellent sensitivity, false positive rate (FPR) and positive predictive value (PPV) in all the validation dataset and two testing Chinese populations. RFC represented outstanding advantages comparing several different classification models based on machine learning and the traditional logistic regression model. RFC is promising to be applied to neonatal PKU screening.
format Online
Article
Text
id pubmed-9592754
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-95927542022-10-26 Random forest classifier improving phenylketonuria screening performance in two Chinese populations Song, Yingnan Yin, Zhe Zhang, Chuan Hao, Shengju Li, Haibo Wang, Shifan Yang, Xiangchun Li, Qiong Zhuang, Danyan Zhang, Xinyuan Cao, Zongfu Ma, Xu Front Mol Biosci Molecular Biosciences Phenylketonuria (PKU) is a genetic disorder with amino acid metabolic defect, which does great harms to the development of newborns and children. Early diagnosis and treatment can effectively prevent the disease progression. Here we developed a PKU screening model using random forest classifier (RFC) to improve PKU screening performance with excellent sensitivity, false positive rate (FPR) and positive predictive value (PPV) in all the validation dataset and two testing Chinese populations. RFC represented outstanding advantages comparing several different classification models based on machine learning and the traditional logistic regression model. RFC is promising to be applied to neonatal PKU screening. Frontiers Media S.A. 2022-10-11 /pmc/articles/PMC9592754/ /pubmed/36304929 http://dx.doi.org/10.3389/fmolb.2022.986556 Text en Copyright © 2022 Song, Yin, Zhang, Hao, Li, Wang, Yang, Li, Zhuang, Zhang, Cao and Ma. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Molecular Biosciences
Song, Yingnan
Yin, Zhe
Zhang, Chuan
Hao, Shengju
Li, Haibo
Wang, Shifan
Yang, Xiangchun
Li, Qiong
Zhuang, Danyan
Zhang, Xinyuan
Cao, Zongfu
Ma, Xu
Random forest classifier improving phenylketonuria screening performance in two Chinese populations
title Random forest classifier improving phenylketonuria screening performance in two Chinese populations
title_full Random forest classifier improving phenylketonuria screening performance in two Chinese populations
title_fullStr Random forest classifier improving phenylketonuria screening performance in two Chinese populations
title_full_unstemmed Random forest classifier improving phenylketonuria screening performance in two Chinese populations
title_short Random forest classifier improving phenylketonuria screening performance in two Chinese populations
title_sort random forest classifier improving phenylketonuria screening performance in two chinese populations
topic Molecular Biosciences
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9592754/
https://www.ncbi.nlm.nih.gov/pubmed/36304929
http://dx.doi.org/10.3389/fmolb.2022.986556
work_keys_str_mv AT songyingnan randomforestclassifierimprovingphenylketonuriascreeningperformanceintwochinesepopulations
AT yinzhe randomforestclassifierimprovingphenylketonuriascreeningperformanceintwochinesepopulations
AT zhangchuan randomforestclassifierimprovingphenylketonuriascreeningperformanceintwochinesepopulations
AT haoshengju randomforestclassifierimprovingphenylketonuriascreeningperformanceintwochinesepopulations
AT lihaibo randomforestclassifierimprovingphenylketonuriascreeningperformanceintwochinesepopulations
AT wangshifan randomforestclassifierimprovingphenylketonuriascreeningperformanceintwochinesepopulations
AT yangxiangchun randomforestclassifierimprovingphenylketonuriascreeningperformanceintwochinesepopulations
AT liqiong randomforestclassifierimprovingphenylketonuriascreeningperformanceintwochinesepopulations
AT zhuangdanyan randomforestclassifierimprovingphenylketonuriascreeningperformanceintwochinesepopulations
AT zhangxinyuan randomforestclassifierimprovingphenylketonuriascreeningperformanceintwochinesepopulations
AT caozongfu randomforestclassifierimprovingphenylketonuriascreeningperformanceintwochinesepopulations
AT maxu randomforestclassifierimprovingphenylketonuriascreeningperformanceintwochinesepopulations