Cargando…
Is it time we get real? A systematic review of the potential of data-driven technologies to address teachers' implicit biases
Data-driven technologies for education, such as artificial intelligence in education (AIEd) systems, learning analytics dashboards, open learner models, and other applications, are often created with an aspiration to help teachers make better, evidence-informed decisions in the classroom. Addressing...
Autores principales: | Gauthier, Andrea, Rizvi, Saman, Cukurova, Mutlu, Mavrikis, Manolis |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9592763/ https://www.ncbi.nlm.nih.gov/pubmed/36304958 http://dx.doi.org/10.3389/frai.2022.994967 |
Ejemplares similares
-
Implicit Standardization in a Minority Language Community: Real-Time Syntactic Change among Hasidic Yiddish Writers
por: Bleaman, Isaac L.
Publicado: (2020) -
Addressing Fairness, Bias, and Appropriate Use of Artificial Intelligence and Machine Learning in Global Health
por: Fletcher, Richard Ribón, et al.
Publicado: (2021) -
Balancing Performance and Human Autonomy With Implicit Guidance Agent
por: Nakahashi, Ryo, et al.
Publicado: (2021) -
Participatory design of teacher dashboards: navigating the tension between teacher input and theories on teacher professional vision
por: van Leeuwen, Anouschka, et al.
Publicado: (2023) -
Modelling Speaker Attribution in Narrative Texts With Biased and Bias-Adjustable Neural Networks
por: Dönicke, Tillmann, et al.
Publicado: (2022)