Cargando…

Does mental rotation emulate motor processes? An electrophysiological study of objects and body parts

Several arguments suggest that motor planning may share embodied neural mechanisms with mental rotation (MR). However, it is not well established whether this overlap occurs regardless of the type of stimulus that is manipulated, in particular manipulable or non-manipulable objects and body parts. W...

Descripción completa

Detalles Bibliográficos
Autores principales: Menéndez Granda, Marta, Iannotti, Giannina Rita, Darqué, Alexandra, Ptak, Radek
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9592819/
https://www.ncbi.nlm.nih.gov/pubmed/36304589
http://dx.doi.org/10.3389/fnhum.2022.983137
Descripción
Sumario:Several arguments suggest that motor planning may share embodied neural mechanisms with mental rotation (MR). However, it is not well established whether this overlap occurs regardless of the type of stimulus that is manipulated, in particular manipulable or non-manipulable objects and body parts. We here used high-density electroencephalography (EEG) to examine the cognitive similarity between MR of objects that do not afford specific hand actions (chairs) and bodily stimuli (hands). Participants had identical response options for both types of stimuli, and they gave responses orally in order to prevent possible interference with motor imagery. MR of hands and chairs generated very similar behavioral responses, time-courses and neural sources of evoked-response potentials (ERPs). ERP segmentation analysis revealed distinct time windows during which differential effects of stimulus type and angular disparity were observed. An early period (90–160 ms) differentiated only between stimulus types, and was associated with occipito-temporal activity. A later period (290–330 ms) revealed strong effects of angular disparity, associated with electrical sources in the right angular gyrus and primary motor/somatosensory cortex. These data suggest that spatial transformation processes and motor planning are recruited simultaneously, supporting the involvement of motor emulation processes in MR.