Cargando…
Predicting clinical response to everolimus in ER+ breast cancers using machine-learning
Endocrine therapy remains the primary treatment choice for ER+ breast cancers. However, most advanced ER+ breast cancers ultimately develop resistance to endocrine. This acquired resistance to endocrine therapy is often driven by the activation of the PI3K/AKT/mTOR signaling pathway. Everolimus, a d...
Autores principales: | Nath, Aritro, Cosgrove, Patrick A., Chang, Jeffrey T., Bild, Andrea H. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9592823/ https://www.ncbi.nlm.nih.gov/pubmed/36304922 http://dx.doi.org/10.3389/fmolb.2022.981962 |
Ejemplares similares
-
ONC201/TIC10 enhances durability of mTOR inhibitor everolimus in metastatic ER+ breast cancer
por: Farmaki, Elena, et al.
Publicado: (2023) -
Review of Machine Learning Methods for the Prediction and Reconstruction of Metabolic Pathways
por: Shah, Hayat Ali, et al.
Publicado: (2021) -
A Qualitative Transcriptional Signature for Predicting Extreme Resistance of ER-Negative Breast Cancer to Paclitaxel, Doxorubicin, and Cyclophosphamide Neoadjuvant Chemotherapy
por: Chen, Yanhua, et al.
Publicado: (2020) -
Decoding the Role of Epigenetics in Breast Cancer Using Formal Modeling and Machine-Learning Methods
por: Asim, Ayesha, et al.
Publicado: (2022) -
Machine learning-driven exploration of drug therapies for triple-negative breast cancer treatment
por: Kaushik, Aman Chandra, et al.
Publicado: (2023)