Cargando…
TransCluster: A Cell-Type Identification Method for single-cell RNA-Seq data using deep learning based on transformer
Recent advances in single-cell RNA sequencing (scRNA-seq) have accelerated the development of techniques to classify thousands of cells through transcriptome profiling. As more and more scRNA-seq data become available, supervised cell type classification methods using externally well-annotated sourc...
Autores principales: | Song, Tao, Dai, Huanhuan, Wang, Shuang, Wang, Gan, Zhang, Xudong, Zhang, Ying, Jiao, Linfang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9592860/ https://www.ncbi.nlm.nih.gov/pubmed/36303549 http://dx.doi.org/10.3389/fgene.2022.1038919 |
Ejemplares similares
-
scTransSort: Transformers for Intelligent Annotation of Cell Types by Gene Embeddings
por: Jiao, Linfang, et al.
Publicado: (2023) -
MulCNN: An efficient and accurate deep learning method based on gene embedding for cell type identification in single-cell RNA-seq data
por: Jiao, Linfang, et al.
Publicado: (2023) -
Clustering CITE-seq data with a canonical correlation-based deep learning method
por: Yuan, Musu, et al.
Publicado: (2022) -
CBA: Cluster-Guided Batch Alignment for Single Cell RNA-seq
por: Yu, Wenbo, et al.
Publicado: (2021) -
EC-PGMGR: Ensemble Clustering Based on Probability Graphical Model With Graph Regularization for Single-Cell RNA-seq Data
por: Zhu, Yuan, et al.
Publicado: (2020)