Cargando…

Explaining reviewing effort: Existing reviews as potential driver

Online review systems try to motivate reviewers to invest effort in writing reviews, as their success crucially depends on the helpfulness of such reviews. Underlying cognitive mechanisms, however, might influence future reviewing effort. Accordingly, in this study, we analyze whether existing revie...

Descripción completa

Detalles Bibliográficos
Autores principales: Rohde, Christoph, Kupfer, Alexander, Zimmermann, Steffen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9592883/
https://www.ncbi.nlm.nih.gov/pubmed/36313980
http://dx.doi.org/10.1007/s12525-022-00595-3
Descripción
Sumario:Online review systems try to motivate reviewers to invest effort in writing reviews, as their success crucially depends on the helpfulness of such reviews. Underlying cognitive mechanisms, however, might influence future reviewing effort. Accordingly, in this study, we analyze whether existing reviews matter for future textual reviews. From analyzing a dataset from Google Maps covering 40 sights across Europe with over 37,000 reviews, we find that textual reviewing effort, as measured by the propensity to write an optional textual review and (textual) review length, is negatively related to the number of existing reviews. However, and against our expectations, reviewers do not increase textual reviewing effort if there is a large discrepancy between the existing rating valence and their own rating. We validate our findings using additional review data from Yelp. This work provides important implications for online platforms with review systems, as the presentation of review metrics matters for future textual reviewing effort.