Cargando…
Quantum-based machine learning and AI models to generate force field parameters for drug-like small molecules
Force fields for drug-like small molecules play an essential role in molecular dynamics simulations and binding free energy calculations. In particular, the accurate generation of partial charges on small molecules is critical to understanding the interactions between proteins and drug-like molecule...
Autores principales: | Mudedla, Sathish Kumar, Braka, Abdennour, Wu, Sangwook |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9592901/ https://www.ncbi.nlm.nih.gov/pubmed/36304919 http://dx.doi.org/10.3389/fmolb.2022.1002535 |
Ejemplares similares
-
PCW-A1001, AI-assisted de novo design approach to design a selective inhibitor for FLT-3(D835Y) in acute myeloid leukemia
por: Jang, Seong Hun, et al.
Publicado: (2022) -
Improving Small-Molecule Force Field Parameters in Ligand Binding Studies
por: Raniolo, Stefano, et al.
Publicado: (2021) -
Using Small-Angle Scattering Data and Parametric Machine Learning to Optimize Force Field Parameters for Intrinsically Disordered Proteins
por: Demerdash, Omar, et al.
Publicado: (2019) -
Development and Testing of Force Field Parameters for Phenylalanine and Tyrosine Derivatives
por: Wang, Xiaowen, et al.
Publicado: (2020) -
Next Generation Methods for Single-Molecule Force Spectroscopy on Polyproteins and Receptor-Ligand Complexes
por: Yang, Byeongseon, et al.
Publicado: (2020)