Cargando…
Remodeling of the aortic wall layers with ageing
Aim: The authors aimed to evaluate the correlations between the variation of two of the main morphological parameters of the aortic wall (intima and media thicknesses) and ageing. Materials and Methods: Aortic cross sections (base region, cross region, thoracic region, and abdominal region) were col...
Autores principales: | Albu, Mirela, Şeicaru, Doru Adrian, Pleşea, Răzvan Mihail, Mirea, Oana Cristina, Gherghiceanu, Florentina, Grigorean, Valentin Titus, Şerbănescu, Mircea-Sebastian, Pleşea, Iancu Emil, Liţescu, Mircea |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Academy of Medical Sciences, Romanian Academy Publishing House, Bucharest
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9593119/ https://www.ncbi.nlm.nih.gov/pubmed/36074670 http://dx.doi.org/10.47162/RJME.63.1.07 |
Ejemplares similares
-
Assessment of the aortic wall histological changes with ageing
por: Albu, Mirela, et al.
Publicado: (2021) -
Anatomical remodeling of the aortic wall in relation with the cause of death
por: Şeicaru, Doru Adrian, et al.
Publicado: (2021) -
Epithelioid hemangioendothelioma – an unexpected diagnosis of a mediastinal tumor with extensive local thrombosis
por: Liţescu, Mircea, et al.
Publicado: (2022) -
Agreement of two pre-trained deep-learning neural networks built with transfer learning with six pathologists on 6000 patches of prostate cancer from Gleason2019 Challenge
por: Şerbănescu, Mircea-Sebastian, et al.
Publicado: (2020) -
Automated Gleason grading of prostate cancer using transfer learning from general-purpose deep-learning networks
por: Şerbănescu, Mircea-Sebastian, et al.
Publicado: (2020)