Cargando…
Predicting low cognitive ability at age 5 using machine learning methods and birth cohort data
BACKGROUND: Early intervention is essential to address disparities in cognitive development. Current developmental screening will not detect the vast majority of children who go on to have below average cognitive ability at school age. In this study, we applied the random forest (RF) algorithm, a hi...
Autores principales: | Bowe, A, Staines, A, McCarthy, F, Lightbody, G, Murray, D |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9593595/ http://dx.doi.org/10.1093/eurpub/ckac131.422 |
Ejemplares similares
-
Predicting Low Cognitive Ability at Age 5—Feature Selection Using Machine Learning Methods and Birth Cohort Data
por: Bowe, Andrea K., et al.
Publicado: (2022) -
Big data, machine learning, and population health: predicting cognitive outcomes in childhood
por: Bowe, Andrea K., et al.
Publicado: (2022) -
Age trajectories of disability in middle and older age: a machine learning approach
por: Chang, Y-H, et al.
Publicado: (2023) -
Low birth weight in Angola and its socioeconomic determinants
por: da Silva Maia, J, et al.
Publicado: (2022) -
The predictive value of the ages and stages questionnaire in late infancy for low average cognitive ability at age 5
por: Bowe, Andrea K., et al.
Publicado: (2022)