Cargando…
SHAPR predicts 3D cell shapes from 2D microscopic images
Reconstruction of shapes and sizes of three-dimensional (3D) objects from two- dimensional (2D) information is an intensely studied subject in computer vision. We here consider the level of single cells and nuclei and present a neural network-based SHApe PRediction autoencoder. For proof-of-concept,...
Autores principales: | Waibel, Dominik J.E., Kiermeyer, Niklas, Atwell, Scott, Sadafi, Ario, Meier, Matthias, Marr, Carsten |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9593790/ https://www.ncbi.nlm.nih.gov/pubmed/36304119 http://dx.doi.org/10.1016/j.isci.2022.105298 |
Ejemplares similares
-
Label-free imaging of 3D pluripotent stem cell differentiation dynamics on chip
por: Atwell, Scott, et al.
Publicado: (2023) -
RedTell: an AI tool for interpretable analysis of red blood cell morphology
por: Sadafi, Ario, et al.
Publicado: (2023) -
Explainable AI identifies diagnostic cells of genetic AML subtypes
por: Hehr, Matthias, et al.
Publicado: (2023) -
InstantDL: an easy-to-use deep learning pipeline for image segmentation and classification
por: Waibel, Dominik Jens Elias, et al.
Publicado: (2021) -
Upscaling of pneumatic membrane valves for the integration of 3D cell cultures on chip
por: Compera, Nina, et al.
Publicado: (2021)