Cargando…

Reducing the potential allergenicity of amandin through binding to (−)-epigallocatechin gallate

Potential allergenicity of amandin was reduced by binding amandin with (−)-epigallocatechin gallate (EGCG) via alkaline, free radical, ultrasound-assisted alkaline, and ultrasound-assisted free radical methods. These results of total phenol content, free sulfhydryl group, free amino group, surface h...

Descripción completa

Detalles Bibliográficos
Autores principales: Luo, Xin, Lu, Jiankang, Wu, Yongyan, Duan, Wenshan, An, Fengping, Huang, Qun, Chen, Lei, Wei, Shaofeng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9594120/
https://www.ncbi.nlm.nih.gov/pubmed/36304206
http://dx.doi.org/10.1016/j.fochx.2022.100482
Descripción
Sumario:Potential allergenicity of amandin was reduced by binding amandin with (−)-epigallocatechin gallate (EGCG) via alkaline, free radical, ultrasound-assisted alkaline, and ultrasound-assisted free radical methods. These results of total phenol content, free sulfhydryl group, free amino group, surface hydrophobicity, and sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) indicated that amandin might be covalently bound to EGCG through reactive groups such as sulfhydryl and amino groups, or non-covalently through hydrophobic interactions. Fourier transformed infrared (FT-IR) spectroscopy and fluorescence spectroscopy revealed structural changes of amandin-EGCG conjugate, which also caused significant reduction in potential allergenicity of amandin. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) found that amandin bound to EGCG mainly through cysteine and glutamate residues, and linear epitope for amandin was reduced. This provided a new method and theoretical basis of hypoallergenic almond food.