Cargando…
Engineering Endosymbiotic Growth of E. coli in Mammalian Cells
[Image: see text] Endosymbioses are cellular mergers in which one cell lives within another cell and have led to major evolutionary transitions, most prominently to eukaryogenesis. Generation of synthetic endosymbioses aims to provide a defined starting point for studying fundamental processes in em...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9594318/ https://www.ncbi.nlm.nih.gov/pubmed/36194551 http://dx.doi.org/10.1021/acssynbio.2c00292 |
_version_ | 1784815385189548032 |
---|---|
author | Gäbelein, Christoph G. Reiter, Michael A. Ernst, Chantal Giger, Gabriel H. Vorholt, Julia A. |
author_facet | Gäbelein, Christoph G. Reiter, Michael A. Ernst, Chantal Giger, Gabriel H. Vorholt, Julia A. |
author_sort | Gäbelein, Christoph G. |
collection | PubMed |
description | [Image: see text] Endosymbioses are cellular mergers in which one cell lives within another cell and have led to major evolutionary transitions, most prominently to eukaryogenesis. Generation of synthetic endosymbioses aims to provide a defined starting point for studying fundamental processes in emerging endosymbiotic systems and enable the engineering of cells with novel properties. Here, we tested the potential of different bacteria for artificial endosymbiosis in mammalian cells. To this end, we adopted the fluidic force microscopy technology to inject diverse bacteria directly into the cytosol of HeLa cells and examined the endosymbiont-host interactions by real-time fluorescence microscopy. Among them, Escherichia coli grew exponentially within the cytoplasm, however, at a faster pace than its host cell. To slow down the intracellular growth of E. coli, we introduced auxotrophies in E. coli and demonstrated that the intracellular growth rate can be reduced by limiting the uptake of aromatic amino acids. In consequence, the survival of the endosymbiont-host pair was prolonged. The presented experimental framework enables studying endosymbiotic candidate systems at high temporal resolution and at the single cell level. Our work represents a starting point for engineering a stable, vertically inherited endosymbiosis. |
format | Online Article Text |
id | pubmed-9594318 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-95943182022-10-26 Engineering Endosymbiotic Growth of E. coli in Mammalian Cells Gäbelein, Christoph G. Reiter, Michael A. Ernst, Chantal Giger, Gabriel H. Vorholt, Julia A. ACS Synth Biol [Image: see text] Endosymbioses are cellular mergers in which one cell lives within another cell and have led to major evolutionary transitions, most prominently to eukaryogenesis. Generation of synthetic endosymbioses aims to provide a defined starting point for studying fundamental processes in emerging endosymbiotic systems and enable the engineering of cells with novel properties. Here, we tested the potential of different bacteria for artificial endosymbiosis in mammalian cells. To this end, we adopted the fluidic force microscopy technology to inject diverse bacteria directly into the cytosol of HeLa cells and examined the endosymbiont-host interactions by real-time fluorescence microscopy. Among them, Escherichia coli grew exponentially within the cytoplasm, however, at a faster pace than its host cell. To slow down the intracellular growth of E. coli, we introduced auxotrophies in E. coli and demonstrated that the intracellular growth rate can be reduced by limiting the uptake of aromatic amino acids. In consequence, the survival of the endosymbiont-host pair was prolonged. The presented experimental framework enables studying endosymbiotic candidate systems at high temporal resolution and at the single cell level. Our work represents a starting point for engineering a stable, vertically inherited endosymbiosis. American Chemical Society 2022-10-04 2022-10-21 /pmc/articles/PMC9594318/ /pubmed/36194551 http://dx.doi.org/10.1021/acssynbio.2c00292 Text en © 2022 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by-nc-nd/4.0/Permits non-commercial access and re-use, provided that author attribution and integrity are maintained; but does not permit creation of adaptations or other derivative works (https://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Gäbelein, Christoph G. Reiter, Michael A. Ernst, Chantal Giger, Gabriel H. Vorholt, Julia A. Engineering Endosymbiotic Growth of E. coli in Mammalian Cells |
title | Engineering Endosymbiotic Growth of E. coli in Mammalian Cells |
title_full | Engineering Endosymbiotic Growth of E. coli in Mammalian Cells |
title_fullStr | Engineering Endosymbiotic Growth of E. coli in Mammalian Cells |
title_full_unstemmed | Engineering Endosymbiotic Growth of E. coli in Mammalian Cells |
title_short | Engineering Endosymbiotic Growth of E. coli in Mammalian Cells |
title_sort | engineering endosymbiotic growth of e. coli in mammalian cells |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9594318/ https://www.ncbi.nlm.nih.gov/pubmed/36194551 http://dx.doi.org/10.1021/acssynbio.2c00292 |
work_keys_str_mv | AT gabeleinchristophg engineeringendosymbioticgrowthofecoliinmammaliancells AT reitermichaela engineeringendosymbioticgrowthofecoliinmammaliancells AT ernstchantal engineeringendosymbioticgrowthofecoliinmammaliancells AT gigergabrielh engineeringendosymbioticgrowthofecoliinmammaliancells AT vorholtjuliaa engineeringendosymbioticgrowthofecoliinmammaliancells |