Cargando…
Joint modeling strategy for using electronic medical records data to build machine learning models: an example of intracerebral hemorrhage
BACKGROUND: Outliers and class imbalance in medical data could affect the accuracy of machine learning models. For physicians who want to apply predictive models, how to use the data at hand to build a model and what model to choose are very thorny problems. Therefore, it is necessary to consider ou...
Autores principales: | Tang, Jianxiang, Wang, Xiaoyu, Wan, Hongli, Lin, Chunying, Shao, Zilun, Chang, Yang, Wang, Hexuan, Wu, Yi, Zhang, Tao, Du, Yu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9594939/ https://www.ncbi.nlm.nih.gov/pubmed/36284327 http://dx.doi.org/10.1186/s12911-022-02018-x |
Ejemplares similares
-
Application of machine learning missing data imputation techniques in clinical decision making: taking the discharge assessment of patients with spontaneous supratentorial intracerebral hemorrhage as an example
por: Wang, Huimin, et al.
Publicado: (2022) -
Sex-related differences in spontaneous intracerebral hemorrhage outcomes: A prognostic study based on 111,112 medical records
por: Zhao, Jieyi, et al.
Publicado: (2022) -
Machine learning models predict coagulopathy in spontaneous intracerebral hemorrhage patients in ER
por: Zhu, Fengping, et al.
Publicado: (2020) -
Personalized risk prediction of symptomatic intracerebral hemorrhage
after stroke thrombolysis using a machine-learning model
por: Wang, Feng, et al.
Publicado: (2020) -
Behavioral Assessment of Sensory, Motor, Emotion, and Cognition in Rodent Models of Intracerebral Hemorrhage
por: Shi, Xiaoyu, et al.
Publicado: (2021)