Cargando…

Extracellular vesicles derived from endometrial epithelial cells deliver exogenous miR-92b-3p to affect the function of embryonic trophoblast cells via targeting TSC1 and DKK3

BACKGROUND: Extracellular vesicles (EVs) could mediate embryo-maternal communication to affect embryo implantation by delivering biology information, including microRNA (miRNA), protein, lipid. Our previous research shows that miR-92b-3p was differentially expressed in EVs of uterine flushing fluids...

Descripción completa

Detalles Bibliográficos
Autores principales: Hua, Renwu, Liu, Qiaorui, Lian, Weisi, Kang, Ting ting, Gao, Dengying, Huang, Cheng, Wang, Yueying, Lei, Minggang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9594956/
https://www.ncbi.nlm.nih.gov/pubmed/36284344
http://dx.doi.org/10.1186/s12958-022-01023-z
Descripción
Sumario:BACKGROUND: Extracellular vesicles (EVs) could mediate embryo-maternal communication to affect embryo implantation by delivering biology information, including microRNA (miRNA), protein, lipid. Our previous research shows that miR-92b-3p was differentially expressed in EVs of uterine flushing fluids during the embryo implantation period. However, the role of miR-92b-3p from EVs in embryo implantation remains elusive. MATERIALS AND METHODS: EVs were isolated from porcine endometrial epithelial cells (EECs) by ultracentrifugation. MiR-92b-3p mimics and EVs were used to regulate the expression of miR-92b-3p in porcine trophoblast cells (PTr2 cells). Cell proliferation, migration and adhesion analyses were used to observe the phenotype. RT-qPCR, western blot and dual-luciferase reporter assay were used to assess the targets of miR-92b-3p. RESULTS: In this study, EVs derived from porcine EECs were identified and could be taken up by PTr2 cells. We found that the EVs derived from EECs transfected with miR-92b-3p mimic (EVs-miR-92b-3p) significantly promoted the proliferation, migration and adhesion of PTr2 cells. We verified that Tuberous sclerosis complex subunit (TSC1) and Dickkopf 3 (DKK3) were the target genes of miR-92b-3p. Moreover, our study showed that miR-92b-3p plays a vital role in PTr2 cells via targeting TSC1 and DKK3. Furthermore, the 3'UTR vectors of TSC1 and DKK3 can rescue the effect of miR-92b-3p on PTr2 cells. CONCLUSIONS: Taken together, this study reveals a novel mechanism that EVs derived from porcine EECs treated with miR-92b-3p crosstalk with trophoblasts by targeting TSC1 and DKK3, leading to an enhanced ability for implantation. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12958-022-01023-z.