Cargando…

Regulation of sleep disorders in patients with traumatic brain injury by intestinal flora based on the background of brain-gut axis

OBJECTIVE: This study investigates whether people with sleep disorders following traumatic brain injury exhibit altered intestinal flora. The changes may allow us to gain a better understanding of the role of intestinal flora in patients with sleep disorders after traumatic brain injury, which may g...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhanfeng, Niu, Liang, Wu, Jing, Kang, Jinbo, Bai, Yanjun, Chen, Hechun, Xia
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9594989/
https://www.ncbi.nlm.nih.gov/pubmed/36303945
http://dx.doi.org/10.3389/fnins.2022.934822
_version_ 1784815552346193920
author Zhanfeng, Niu
Liang, Wu
Jing, Kang
Jinbo, Bai
Yanjun, Chen
Hechun, Xia
author_facet Zhanfeng, Niu
Liang, Wu
Jing, Kang
Jinbo, Bai
Yanjun, Chen
Hechun, Xia
author_sort Zhanfeng, Niu
collection PubMed
description OBJECTIVE: This study investigates whether people with sleep disorders following traumatic brain injury exhibit altered intestinal flora. The changes may allow us to gain a better understanding of the role of intestinal flora in patients with sleep disorders after traumatic brain injury, which may give us insights into curing the sleep disorder after traumatic brain injury (TBI). METHOD: We analyzed the intestinal microbial colony structure in the feces of the 28 patients in the normal sleep group and the sleep disorder group by 16SrDNAsequencing technology. The bioinformatics method was used to analyze the intestinal flora change in the v3-v4 region of patients with biorhythm disorder and to observe the difference between the two groups. RESULTS: Group grouping comparison and analysis of the evolutionary cladistic map showed the intestinal flora of patients with normal sleep after TBI was mainly Bacilli and Lactobacillales, while that of patients with sleep disorders was mainly Lachnospiraceae and Bacteroidales. The histogram of group value distribution by grouping comparison and analysis showed that Lachnospiraceae, Bacteroidales, Bacteroidia, and Bacteroidetes were dominant in the sleep disorder group. A relative abundance map of species with significant differences by group grouping comparison showed the main manifestations of intestinal flora are Firmicutes, Bacilli, Lactobacillales, Streptococcaceae, and Bacteroidetes. The normal sleep group was dominated by Bacilli, Lactobacillales, Streptococcus, and Veillonella, while in the sleep disorder group, Lachnospiraceae, Bacteroidales, Bacteroidia, and Bacteroidetes were the main species. It was found that there were also significant differences in intestinal flora abundance between the two groups after TBI. After statistics processing, it was compared with the normal sleep group, Lactobacillus, Streptococcus, Oribacterium and Rothia, Actinomyces, Streptophyta, TM7-3 bacteria, and Serratia, showing a significant reduction in the sleep disorder group (P < 0.05). However, Odoribacter, Lachnospiraceae, and Bilophila increased significantly (P < 0.05). CONCLUSION: The sleep disorders of patients after TBI can be closely related to intestinal flora disturbance, and its internal mechanism needs further study. Intestinal flora has the potential to be a new therapeutic target.
format Online
Article
Text
id pubmed-9594989
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-95949892022-10-26 Regulation of sleep disorders in patients with traumatic brain injury by intestinal flora based on the background of brain-gut axis Zhanfeng, Niu Liang, Wu Jing, Kang Jinbo, Bai Yanjun, Chen Hechun, Xia Front Neurosci Neuroscience OBJECTIVE: This study investigates whether people with sleep disorders following traumatic brain injury exhibit altered intestinal flora. The changes may allow us to gain a better understanding of the role of intestinal flora in patients with sleep disorders after traumatic brain injury, which may give us insights into curing the sleep disorder after traumatic brain injury (TBI). METHOD: We analyzed the intestinal microbial colony structure in the feces of the 28 patients in the normal sleep group and the sleep disorder group by 16SrDNAsequencing technology. The bioinformatics method was used to analyze the intestinal flora change in the v3-v4 region of patients with biorhythm disorder and to observe the difference between the two groups. RESULTS: Group grouping comparison and analysis of the evolutionary cladistic map showed the intestinal flora of patients with normal sleep after TBI was mainly Bacilli and Lactobacillales, while that of patients with sleep disorders was mainly Lachnospiraceae and Bacteroidales. The histogram of group value distribution by grouping comparison and analysis showed that Lachnospiraceae, Bacteroidales, Bacteroidia, and Bacteroidetes were dominant in the sleep disorder group. A relative abundance map of species with significant differences by group grouping comparison showed the main manifestations of intestinal flora are Firmicutes, Bacilli, Lactobacillales, Streptococcaceae, and Bacteroidetes. The normal sleep group was dominated by Bacilli, Lactobacillales, Streptococcus, and Veillonella, while in the sleep disorder group, Lachnospiraceae, Bacteroidales, Bacteroidia, and Bacteroidetes were the main species. It was found that there were also significant differences in intestinal flora abundance between the two groups after TBI. After statistics processing, it was compared with the normal sleep group, Lactobacillus, Streptococcus, Oribacterium and Rothia, Actinomyces, Streptophyta, TM7-3 bacteria, and Serratia, showing a significant reduction in the sleep disorder group (P < 0.05). However, Odoribacter, Lachnospiraceae, and Bilophila increased significantly (P < 0.05). CONCLUSION: The sleep disorders of patients after TBI can be closely related to intestinal flora disturbance, and its internal mechanism needs further study. Intestinal flora has the potential to be a new therapeutic target. Frontiers Media S.A. 2022-10-11 /pmc/articles/PMC9594989/ /pubmed/36303945 http://dx.doi.org/10.3389/fnins.2022.934822 Text en Copyright © 2022 Zhanfeng, Liang, Jing, Jinbo, Yanjun and Hechun. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Neuroscience
Zhanfeng, Niu
Liang, Wu
Jing, Kang
Jinbo, Bai
Yanjun, Chen
Hechun, Xia
Regulation of sleep disorders in patients with traumatic brain injury by intestinal flora based on the background of brain-gut axis
title Regulation of sleep disorders in patients with traumatic brain injury by intestinal flora based on the background of brain-gut axis
title_full Regulation of sleep disorders in patients with traumatic brain injury by intestinal flora based on the background of brain-gut axis
title_fullStr Regulation of sleep disorders in patients with traumatic brain injury by intestinal flora based on the background of brain-gut axis
title_full_unstemmed Regulation of sleep disorders in patients with traumatic brain injury by intestinal flora based on the background of brain-gut axis
title_short Regulation of sleep disorders in patients with traumatic brain injury by intestinal flora based on the background of brain-gut axis
title_sort regulation of sleep disorders in patients with traumatic brain injury by intestinal flora based on the background of brain-gut axis
topic Neuroscience
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9594989/
https://www.ncbi.nlm.nih.gov/pubmed/36303945
http://dx.doi.org/10.3389/fnins.2022.934822
work_keys_str_mv AT zhanfengniu regulationofsleepdisordersinpatientswithtraumaticbraininjurybyintestinalflorabasedonthebackgroundofbraingutaxis
AT liangwu regulationofsleepdisordersinpatientswithtraumaticbraininjurybyintestinalflorabasedonthebackgroundofbraingutaxis
AT jingkang regulationofsleepdisordersinpatientswithtraumaticbraininjurybyintestinalflorabasedonthebackgroundofbraingutaxis
AT jinbobai regulationofsleepdisordersinpatientswithtraumaticbraininjurybyintestinalflorabasedonthebackgroundofbraingutaxis
AT yanjunchen regulationofsleepdisordersinpatientswithtraumaticbraininjurybyintestinalflorabasedonthebackgroundofbraingutaxis
AT hechunxia regulationofsleepdisordersinpatientswithtraumaticbraininjurybyintestinalflorabasedonthebackgroundofbraingutaxis