Cargando…
Deep Learning for Strawberry Canopy Delineation and Biomass Prediction from High-Resolution Images
Modeling plant canopy biophysical parameters at the individual plant level remains a major challenge. This study presents a workflow for automatic strawberry canopy delineation and biomass prediction from high-resolution images using deep neural networks. High-resolution (5 mm) RGB orthoimages, near...
Autores principales: | Zheng, Caiwang, Abd-Elrahman, Amr, Whitaker, Vance M., Dalid, Cheryl |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
AAAS
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9595049/ https://www.ncbi.nlm.nih.gov/pubmed/36320455 http://dx.doi.org/10.34133/2022/9850486 |
Ejemplares similares
-
Combining High-Resolution Imaging, Deep Learning, and Dynamic Modeling to Separate Disease and Senescence in Wheat Canopies
por: Anderegg, Jonas, et al.
Publicado: (2023) -
An experimental validation of genomic selection in octoploid strawberry
por: Gezan, Salvador A, et al.
Publicado: (2017) -
Imaging and Deep Learning Based Approach to Leaf Wetness Detection in Strawberry
por: Patel, Arth M., et al.
Publicado: (2022) -
Independent Validation of Genomic Prediction in Strawberry Over Multiple Cycles
por: Osorio, Luis F., et al.
Publicado: (2021) -
Explaining biomass growth of tropical canopy trees: the importance of sapwood
por: van der Sande, Masha T., et al.
Publicado: (2015)