Cargando…

Identification of Highly Selective Surface Pathways for Methane Dry Reforming Using Mechanochemical Synthesis of Pd–CeO(2)

[Image: see text] The methane dry reforming (DRM) reaction mechanism was explored via mechanochemically prepared Pd/CeO(2) catalysts (PdAcCeO(2)M), which yield unique Pd–Ce interfaces, where PdAcCeO(2)M has a distinct reaction mechanism and higher reactivity for DRM relative to traditionally synthes...

Descripción completa

Detalles Bibliográficos
Autores principales: Jiménez, Juan D., Betancourt, Luis E., Danielis, Maila, Zhang, Hong, Zhang, Feng, Orozco, Ivan, Xu, Wenqian, Llorca, Jordi, Liu, Ping, Trovarelli, Alessandro, Rodríguez, José A., Colussi, Sara, Senanayake, Sanjaya D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2022
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9595205/
https://www.ncbi.nlm.nih.gov/pubmed/36313524
http://dx.doi.org/10.1021/acscatal.2c01120
_version_ 1784815593956835328
author Jiménez, Juan D.
Betancourt, Luis E.
Danielis, Maila
Zhang, Hong
Zhang, Feng
Orozco, Ivan
Xu, Wenqian
Llorca, Jordi
Liu, Ping
Trovarelli, Alessandro
Rodríguez, José A.
Colussi, Sara
Senanayake, Sanjaya D.
author_facet Jiménez, Juan D.
Betancourt, Luis E.
Danielis, Maila
Zhang, Hong
Zhang, Feng
Orozco, Ivan
Xu, Wenqian
Llorca, Jordi
Liu, Ping
Trovarelli, Alessandro
Rodríguez, José A.
Colussi, Sara
Senanayake, Sanjaya D.
author_sort Jiménez, Juan D.
collection PubMed
description [Image: see text] The methane dry reforming (DRM) reaction mechanism was explored via mechanochemically prepared Pd/CeO(2) catalysts (PdAcCeO(2)M), which yield unique Pd–Ce interfaces, where PdAcCeO(2)M has a distinct reaction mechanism and higher reactivity for DRM relative to traditionally synthesized impregnated Pd/CeO(2) (PdCeO(2)IW). In situ characterization and density functional theory calculations revealed that the enhanced chemistry of PdAcCeO(2)M can be attributed to the presence of a carbon-modified Pd(0) and Ce(4+/3+) surface arrangement, where distinct Pd–CO intermediate species and strong Pd–CeO(2) interactions are activated and sustained exclusively under reaction conditions. This unique arrangement leads to highly selective and distinct surface reaction pathways that prefer the direct oxidation of CH(x) to CO, identified on PdAcCeO(2)M using isotope labeled diffuse reflectance infrared Fourier transform spectroscopy and highlighting linear Pd–CO species bound on metallic and C-modified Pd, leading to adsorbed HCOO [1595 cm(–1)] species as key DRM intermediates, stemming from associative CO(2) reduction. The milled materials contrast strikingly with surface processes observed on IW samples (PdCeO(2)IW) where the competing reverse water gas shift reaction predominates.
format Online
Article
Text
id pubmed-9595205
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-95952052022-10-26 Identification of Highly Selective Surface Pathways for Methane Dry Reforming Using Mechanochemical Synthesis of Pd–CeO(2) Jiménez, Juan D. Betancourt, Luis E. Danielis, Maila Zhang, Hong Zhang, Feng Orozco, Ivan Xu, Wenqian Llorca, Jordi Liu, Ping Trovarelli, Alessandro Rodríguez, José A. Colussi, Sara Senanayake, Sanjaya D. ACS Catal [Image: see text] The methane dry reforming (DRM) reaction mechanism was explored via mechanochemically prepared Pd/CeO(2) catalysts (PdAcCeO(2)M), which yield unique Pd–Ce interfaces, where PdAcCeO(2)M has a distinct reaction mechanism and higher reactivity for DRM relative to traditionally synthesized impregnated Pd/CeO(2) (PdCeO(2)IW). In situ characterization and density functional theory calculations revealed that the enhanced chemistry of PdAcCeO(2)M can be attributed to the presence of a carbon-modified Pd(0) and Ce(4+/3+) surface arrangement, where distinct Pd–CO intermediate species and strong Pd–CeO(2) interactions are activated and sustained exclusively under reaction conditions. This unique arrangement leads to highly selective and distinct surface reaction pathways that prefer the direct oxidation of CH(x) to CO, identified on PdAcCeO(2)M using isotope labeled diffuse reflectance infrared Fourier transform spectroscopy and highlighting linear Pd–CO species bound on metallic and C-modified Pd, leading to adsorbed HCOO [1595 cm(–1)] species as key DRM intermediates, stemming from associative CO(2) reduction. The milled materials contrast strikingly with surface processes observed on IW samples (PdCeO(2)IW) where the competing reverse water gas shift reaction predominates. American Chemical Society 2022-10-07 2022-10-21 /pmc/articles/PMC9595205/ /pubmed/36313524 http://dx.doi.org/10.1021/acscatal.2c01120 Text en © 2022 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by/4.0/Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Jiménez, Juan D.
Betancourt, Luis E.
Danielis, Maila
Zhang, Hong
Zhang, Feng
Orozco, Ivan
Xu, Wenqian
Llorca, Jordi
Liu, Ping
Trovarelli, Alessandro
Rodríguez, José A.
Colussi, Sara
Senanayake, Sanjaya D.
Identification of Highly Selective Surface Pathways for Methane Dry Reforming Using Mechanochemical Synthesis of Pd–CeO(2)
title Identification of Highly Selective Surface Pathways for Methane Dry Reforming Using Mechanochemical Synthesis of Pd–CeO(2)
title_full Identification of Highly Selective Surface Pathways for Methane Dry Reforming Using Mechanochemical Synthesis of Pd–CeO(2)
title_fullStr Identification of Highly Selective Surface Pathways for Methane Dry Reforming Using Mechanochemical Synthesis of Pd–CeO(2)
title_full_unstemmed Identification of Highly Selective Surface Pathways for Methane Dry Reforming Using Mechanochemical Synthesis of Pd–CeO(2)
title_short Identification of Highly Selective Surface Pathways for Methane Dry Reforming Using Mechanochemical Synthesis of Pd–CeO(2)
title_sort identification of highly selective surface pathways for methane dry reforming using mechanochemical synthesis of pd–ceo(2)
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9595205/
https://www.ncbi.nlm.nih.gov/pubmed/36313524
http://dx.doi.org/10.1021/acscatal.2c01120
work_keys_str_mv AT jimenezjuand identificationofhighlyselectivesurfacepathwaysformethanedryreformingusingmechanochemicalsynthesisofpdceo2
AT betancourtluise identificationofhighlyselectivesurfacepathwaysformethanedryreformingusingmechanochemicalsynthesisofpdceo2
AT danielismaila identificationofhighlyselectivesurfacepathwaysformethanedryreformingusingmechanochemicalsynthesisofpdceo2
AT zhanghong identificationofhighlyselectivesurfacepathwaysformethanedryreformingusingmechanochemicalsynthesisofpdceo2
AT zhangfeng identificationofhighlyselectivesurfacepathwaysformethanedryreformingusingmechanochemicalsynthesisofpdceo2
AT orozcoivan identificationofhighlyselectivesurfacepathwaysformethanedryreformingusingmechanochemicalsynthesisofpdceo2
AT xuwenqian identificationofhighlyselectivesurfacepathwaysformethanedryreformingusingmechanochemicalsynthesisofpdceo2
AT llorcajordi identificationofhighlyselectivesurfacepathwaysformethanedryreformingusingmechanochemicalsynthesisofpdceo2
AT liuping identificationofhighlyselectivesurfacepathwaysformethanedryreformingusingmechanochemicalsynthesisofpdceo2
AT trovarellialessandro identificationofhighlyselectivesurfacepathwaysformethanedryreformingusingmechanochemicalsynthesisofpdceo2
AT rodriguezjosea identificationofhighlyselectivesurfacepathwaysformethanedryreformingusingmechanochemicalsynthesisofpdceo2
AT colussisara identificationofhighlyselectivesurfacepathwaysformethanedryreformingusingmechanochemicalsynthesisofpdceo2
AT senanayakesanjayad identificationofhighlyselectivesurfacepathwaysformethanedryreformingusingmechanochemicalsynthesisofpdceo2