Cargando…
Identification of Highly Selective Surface Pathways for Methane Dry Reforming Using Mechanochemical Synthesis of Pd–CeO(2)
[Image: see text] The methane dry reforming (DRM) reaction mechanism was explored via mechanochemically prepared Pd/CeO(2) catalysts (PdAcCeO(2)M), which yield unique Pd–Ce interfaces, where PdAcCeO(2)M has a distinct reaction mechanism and higher reactivity for DRM relative to traditionally synthes...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9595205/ https://www.ncbi.nlm.nih.gov/pubmed/36313524 http://dx.doi.org/10.1021/acscatal.2c01120 |
_version_ | 1784815593956835328 |
---|---|
author | Jiménez, Juan D. Betancourt, Luis E. Danielis, Maila Zhang, Hong Zhang, Feng Orozco, Ivan Xu, Wenqian Llorca, Jordi Liu, Ping Trovarelli, Alessandro Rodríguez, José A. Colussi, Sara Senanayake, Sanjaya D. |
author_facet | Jiménez, Juan D. Betancourt, Luis E. Danielis, Maila Zhang, Hong Zhang, Feng Orozco, Ivan Xu, Wenqian Llorca, Jordi Liu, Ping Trovarelli, Alessandro Rodríguez, José A. Colussi, Sara Senanayake, Sanjaya D. |
author_sort | Jiménez, Juan D. |
collection | PubMed |
description | [Image: see text] The methane dry reforming (DRM) reaction mechanism was explored via mechanochemically prepared Pd/CeO(2) catalysts (PdAcCeO(2)M), which yield unique Pd–Ce interfaces, where PdAcCeO(2)M has a distinct reaction mechanism and higher reactivity for DRM relative to traditionally synthesized impregnated Pd/CeO(2) (PdCeO(2)IW). In situ characterization and density functional theory calculations revealed that the enhanced chemistry of PdAcCeO(2)M can be attributed to the presence of a carbon-modified Pd(0) and Ce(4+/3+) surface arrangement, where distinct Pd–CO intermediate species and strong Pd–CeO(2) interactions are activated and sustained exclusively under reaction conditions. This unique arrangement leads to highly selective and distinct surface reaction pathways that prefer the direct oxidation of CH(x) to CO, identified on PdAcCeO(2)M using isotope labeled diffuse reflectance infrared Fourier transform spectroscopy and highlighting linear Pd–CO species bound on metallic and C-modified Pd, leading to adsorbed HCOO [1595 cm(–1)] species as key DRM intermediates, stemming from associative CO(2) reduction. The milled materials contrast strikingly with surface processes observed on IW samples (PdCeO(2)IW) where the competing reverse water gas shift reaction predominates. |
format | Online Article Text |
id | pubmed-9595205 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-95952052022-10-26 Identification of Highly Selective Surface Pathways for Methane Dry Reforming Using Mechanochemical Synthesis of Pd–CeO(2) Jiménez, Juan D. Betancourt, Luis E. Danielis, Maila Zhang, Hong Zhang, Feng Orozco, Ivan Xu, Wenqian Llorca, Jordi Liu, Ping Trovarelli, Alessandro Rodríguez, José A. Colussi, Sara Senanayake, Sanjaya D. ACS Catal [Image: see text] The methane dry reforming (DRM) reaction mechanism was explored via mechanochemically prepared Pd/CeO(2) catalysts (PdAcCeO(2)M), which yield unique Pd–Ce interfaces, where PdAcCeO(2)M has a distinct reaction mechanism and higher reactivity for DRM relative to traditionally synthesized impregnated Pd/CeO(2) (PdCeO(2)IW). In situ characterization and density functional theory calculations revealed that the enhanced chemistry of PdAcCeO(2)M can be attributed to the presence of a carbon-modified Pd(0) and Ce(4+/3+) surface arrangement, where distinct Pd–CO intermediate species and strong Pd–CeO(2) interactions are activated and sustained exclusively under reaction conditions. This unique arrangement leads to highly selective and distinct surface reaction pathways that prefer the direct oxidation of CH(x) to CO, identified on PdAcCeO(2)M using isotope labeled diffuse reflectance infrared Fourier transform spectroscopy and highlighting linear Pd–CO species bound on metallic and C-modified Pd, leading to adsorbed HCOO [1595 cm(–1)] species as key DRM intermediates, stemming from associative CO(2) reduction. The milled materials contrast strikingly with surface processes observed on IW samples (PdCeO(2)IW) where the competing reverse water gas shift reaction predominates. American Chemical Society 2022-10-07 2022-10-21 /pmc/articles/PMC9595205/ /pubmed/36313524 http://dx.doi.org/10.1021/acscatal.2c01120 Text en © 2022 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by/4.0/Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Jiménez, Juan D. Betancourt, Luis E. Danielis, Maila Zhang, Hong Zhang, Feng Orozco, Ivan Xu, Wenqian Llorca, Jordi Liu, Ping Trovarelli, Alessandro Rodríguez, José A. Colussi, Sara Senanayake, Sanjaya D. Identification of Highly Selective Surface Pathways for Methane Dry Reforming Using Mechanochemical Synthesis of Pd–CeO(2) |
title | Identification
of Highly Selective Surface Pathways
for Methane Dry Reforming Using Mechanochemical Synthesis of Pd–CeO(2) |
title_full | Identification
of Highly Selective Surface Pathways
for Methane Dry Reforming Using Mechanochemical Synthesis of Pd–CeO(2) |
title_fullStr | Identification
of Highly Selective Surface Pathways
for Methane Dry Reforming Using Mechanochemical Synthesis of Pd–CeO(2) |
title_full_unstemmed | Identification
of Highly Selective Surface Pathways
for Methane Dry Reforming Using Mechanochemical Synthesis of Pd–CeO(2) |
title_short | Identification
of Highly Selective Surface Pathways
for Methane Dry Reforming Using Mechanochemical Synthesis of Pd–CeO(2) |
title_sort | identification
of highly selective surface pathways
for methane dry reforming using mechanochemical synthesis of pd–ceo(2) |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9595205/ https://www.ncbi.nlm.nih.gov/pubmed/36313524 http://dx.doi.org/10.1021/acscatal.2c01120 |
work_keys_str_mv | AT jimenezjuand identificationofhighlyselectivesurfacepathwaysformethanedryreformingusingmechanochemicalsynthesisofpdceo2 AT betancourtluise identificationofhighlyselectivesurfacepathwaysformethanedryreformingusingmechanochemicalsynthesisofpdceo2 AT danielismaila identificationofhighlyselectivesurfacepathwaysformethanedryreformingusingmechanochemicalsynthesisofpdceo2 AT zhanghong identificationofhighlyselectivesurfacepathwaysformethanedryreformingusingmechanochemicalsynthesisofpdceo2 AT zhangfeng identificationofhighlyselectivesurfacepathwaysformethanedryreformingusingmechanochemicalsynthesisofpdceo2 AT orozcoivan identificationofhighlyselectivesurfacepathwaysformethanedryreformingusingmechanochemicalsynthesisofpdceo2 AT xuwenqian identificationofhighlyselectivesurfacepathwaysformethanedryreformingusingmechanochemicalsynthesisofpdceo2 AT llorcajordi identificationofhighlyselectivesurfacepathwaysformethanedryreformingusingmechanochemicalsynthesisofpdceo2 AT liuping identificationofhighlyselectivesurfacepathwaysformethanedryreformingusingmechanochemicalsynthesisofpdceo2 AT trovarellialessandro identificationofhighlyselectivesurfacepathwaysformethanedryreformingusingmechanochemicalsynthesisofpdceo2 AT rodriguezjosea identificationofhighlyselectivesurfacepathwaysformethanedryreformingusingmechanochemicalsynthesisofpdceo2 AT colussisara identificationofhighlyselectivesurfacepathwaysformethanedryreformingusingmechanochemicalsynthesisofpdceo2 AT senanayakesanjayad identificationofhighlyselectivesurfacepathwaysformethanedryreformingusingmechanochemicalsynthesisofpdceo2 |