Cargando…
Automated data preparation for in vivo tumor characterization with machine learning
BACKGROUND: This study proposes machine learning-driven data preparation (MLDP) for optimal data preparation (DP) prior to building prediction models for cancer cohorts. METHODS: A collection of well-established DP methods were incorporated for building the DP pipelines for various clinical cohorts...
Autores principales: | Krajnc, Denis, Spielvogel, Clemens P., Grahovac, Marko, Ecsedi, Boglarka, Rasul, Sazan, Poetsch, Nina, Traub-Weidinger, Tatjana, Haug, Alexander R., Ritter, Zsombor, Alizadeh, Hussain, Hacker, Marcus, Beyer, Thomas, Papp, Laszlo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9595446/ https://www.ncbi.nlm.nih.gov/pubmed/36303841 http://dx.doi.org/10.3389/fonc.2022.1017911 |
Ejemplares similares
-
Sex-specific radiomic features of L-[S-methyl-(11)C] methionine PET in patients with newly-diagnosed gliomas in relation to IDH1 predictability
por: Papp, Laszlo, et al.
Publicado: (2023) -
Machine learning predictive performance evaluation of conventional and fuzzy radiomics in clinical cancer imaging cohorts
por: Grahovac, M., et al.
Publicado: (2023) -
Breast Tumor Characterization Using [(18)F]FDG-PET/CT Imaging Combined with Data Preprocessing and Radiomics
por: Krajnc, Denis, et al.
Publicado: (2021) -
Error mitigation enables PET radiomic cancer characterization on quantum computers
por: Moradi, S., et al.
Publicado: (2023) -
Radiogenomic markers enable risk stratification and inference of mutational pathway states in head and neck cancer
por: Spielvogel, Clemens P., et al.
Publicado: (2022)