Cargando…
Predictive models for COVID-19 detection using routine blood tests and machine learning
The problem of accurate, fast, and inexpensive COVID-19 tests has been urgent till now. Standard COVID-19 tests need high-cost reagents and specialized laboratories with high safety requirements, are time-consuming. Data of routine blood tests as a base of SARS-CoV-2 invasion detection allows using...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9595489/ https://www.ncbi.nlm.nih.gov/pubmed/36311357 http://dx.doi.org/10.1016/j.heliyon.2022.e11185 |
Sumario: | The problem of accurate, fast, and inexpensive COVID-19 tests has been urgent till now. Standard COVID-19 tests need high-cost reagents and specialized laboratories with high safety requirements, are time-consuming. Data of routine blood tests as a base of SARS-CoV-2 invasion detection allows using the most practical medicine facilities. But blood tests give general information about a patient’s state, which is not directly associated with COVID-19. COVID-19-specific features should be selected from the list of standard blood characteristics, and decision-making software based on appropriate clinical data should be created. This review describes the abilities to develop predictive models for COVID-19 detection using routine blood tests and machine learning. |
---|