Cargando…

Exocyst complex component 2 is a potential host factor for SARS-CoV-2 infection

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused an epidemic and spread rapidly all over the world. Because the analysis of host factors other than receptors and proteases has not been sufficiently performed, we attempted to identify and characterize host factors essential for...

Descripción completa

Detalles Bibliográficos
Autores principales: Yi, Renxing, Hashimoto, Rina, Sakamoto, Ayaka, Matsumura, Yasufumi, Nagao, Miki, Takahashi, Kazutoshi, Takayama, Kazuo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9595492/
https://www.ncbi.nlm.nih.gov/pubmed/36310645
http://dx.doi.org/10.1016/j.isci.2022.105427
Descripción
Sumario:Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused an epidemic and spread rapidly all over the world. Because the analysis of host factors other than receptors and proteases has not been sufficiently performed, we attempted to identify and characterize host factors essential for SARS-CoV-2 infection using iPS cells and airway organoids (AO). Based on previous CRISPR screening and RNA-seq data, we found that exocyst complex component 2 (EXOC2) is one important host factor for SARS-CoV-2 infection. The intracellular SARS-CoV-2 nucleocapsid (N) expression level was decreased to 3.7% and the virus copy number in cell culture medium was decreased to 1.6% by EXOC2 knockdown. Consistently, immunostaining results showed that N protein-positive cells were significantly decreased by EXOC2 knockdown. We also found that EXOC2 knockdown downregulates SARS-CoV-2 infection by regulating IFNW1 expression. In conclusion, controlling the EXOC2 expression level may prevent SARS-CoV-2 infection and deserves further study.