Cargando…
Defending against adversarial attacks on Covid-19 classifier: A denoiser-based approach
Covid-19 has posed a serious threat to the existence of the human race. Early detection of the virus is vital to effectively containing the virus and treating the patients. Profound testing methods such as the Real-time reverse transcription-polymerase chain reaction (RT-PCR) test and the Rapid Anti...
Autores principales: | Kansal, Keshav, Krishna, P Sai, Jain, Parshva B., R, Surya, Honnavalli, Prasad, Eswaran, Sivaraman |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9595496/ https://www.ncbi.nlm.nih.gov/pubmed/36311356 http://dx.doi.org/10.1016/j.heliyon.2022.e11209 |
Ejemplares similares
-
Private 5G networks: a survey on enabling technologies, deployment models, use cases and research directions
por: Eswaran, Sivaraman, et al.
Publicado: (2022) -
Adversarial Gaussian Denoiser for Multiple-Level Image Denoising
por: Khan, Aamir, et al.
Publicado: (2021) -
Towards Robustifying Image Classifiers against the Perils of Adversarial Attacks on Artificial Intelligence Systems
por: Anastasiou, Theodora, et al.
Publicado: (2022) -
Auto-Denoising for EEG Signals Using Generative Adversarial Network
por: An, Yang, et al.
Publicado: (2022) -
Internet security: how to defend against attackers on the Web
por: Harwood, Mike
Publicado: (2016)