Cargando…

A robust semantic lung segmentation study for CNN-based COVID-19 diagnosis

This paper aims to diagnose COVID-19 by using Chest X-Ray (CXR) scan images in a deep learning-based system. First of all, COVID-19 Chest X-Ray Dataset is used to segment the lung parts in CXR images semantically. DeepLabV3+ architecture is trained by using the masks of the lung parts in this datase...

Descripción completa

Detalles Bibliográficos
Autor principal: Aslan, Muhammet Fatih
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier B.V. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9595502/
https://www.ncbi.nlm.nih.gov/pubmed/36311473
http://dx.doi.org/10.1016/j.chemolab.2022.104695
Descripción
Sumario:This paper aims to diagnose COVID-19 by using Chest X-Ray (CXR) scan images in a deep learning-based system. First of all, COVID-19 Chest X-Ray Dataset is used to segment the lung parts in CXR images semantically. DeepLabV3+ architecture is trained by using the masks of the lung parts in this dataset. The trained architecture is then fed with images in the COVID-19 Radiography Database. In order to improve the output images, some image preprocessing steps are applied. As a result, lung regions are successfully segmented from CXR images. The next step is feature extraction and classification. While features are extracted with modified AlexNet (mAlexNet), Support Vector Machine (SVM) is used for classification. As a result, 3-class data consisting of Normal, Viral Pneumonia and COVID-19 class are classified with 99.8% success. Classification results show that the proposed method is superior to previous state-of-the-art methods.