Cargando…
A robust semantic lung segmentation study for CNN-based COVID-19 diagnosis
This paper aims to diagnose COVID-19 by using Chest X-Ray (CXR) scan images in a deep learning-based system. First of all, COVID-19 Chest X-Ray Dataset is used to segment the lung parts in CXR images semantically. DeepLabV3+ architecture is trained by using the masks of the lung parts in this datase...
Autor principal: | Aslan, Muhammet Fatih |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier B.V.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9595502/ https://www.ncbi.nlm.nih.gov/pubmed/36311473 http://dx.doi.org/10.1016/j.chemolab.2022.104695 |
Ejemplares similares
-
COVID-19 diagnosis using state-of-the-art CNN architecture features and Bayesian Optimization
por: Aslan, Muhammet Fatih, et al.
Publicado: (2022) -
Faster R-CNN for Robust Pedestrian Detection Using Semantic Segmentation Network
por: Liu, Tianrui, et al.
Publicado: (2018) -
CNN-based transfer learning–BiLSTM network: A novel approach for COVID-19 infection detection
por: Aslan, Muhammet Fatih, et al.
Publicado: (2021) -
Improving Depth Estimation by Embedding Semantic Segmentation: A Hybrid CNN Model
por: Valdez-Rodríguez, José E., et al.
Publicado: (2022) -
Adaptive UNet-based Lung Segmentation and Ensemble Learning with CNN-based Deep Features for Automated COVID-19 Diagnosis
por: Das, Anupam
Publicado: (2021)