Cargando…

Q- space trajectory imaging with positivity constraints (QTI+)

Q-space trajectory imaging (QTI) enables the estimation of useful scalar measures indicative of the local tissue structure. This is accomplished by employing generalized gradient waveforms for diffusion sensitization alongside a diffusion tensor distribution (DTD) model. The first two moments of the...

Descripción completa

Detalles Bibliográficos
Autores principales: Herberthson, Magnus, Boito, Deneb, Haije, Tom Dela, Feragen, Aasa, Westin, Carl-Fredrik, Özarslan, Evren
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9596133/
https://www.ncbi.nlm.nih.gov/pubmed/34029738
http://dx.doi.org/10.1016/j.neuroimage.2021.118198
Descripción
Sumario:Q-space trajectory imaging (QTI) enables the estimation of useful scalar measures indicative of the local tissue structure. This is accomplished by employing generalized gradient waveforms for diffusion sensitization alongside a diffusion tensor distribution (DTD) model. The first two moments of the underlying DTD are made available by acquisitions at low diffusion sensitivity (b-values). Here, we show that three independent conditions have to be fulfilled by the mean and covariance tensors associated with distributions of symmetric positive semidefinite tensors. We introduce an estimation framework utilizing semi-definite programming (SDP) to guarantee that these conditions are met. Applying the framework on simulated signal profiles for diffusion tensors distributed according to non-central Wishart distributions demonstrates the improved noise resilience of QTI+ over the commonly employed estimation methods. Our findings on a human brain data set also reveal pronounced improvements, especially so for acquisition protocols featuring few number of volumes. Our method’s robustness to noise is expected to not only improve the accuracy of the estimates, but also enable a meaningful interpretation of contrast in the derived scalar maps. The technique’s performance on shorter acquisitions could make it feasible in routine clinical practice.