Cargando…

Learning effective embedding for automated COVID-19 prediction from chest X-ray images

The pandemic that the SARS-CoV-2 originated in 2019 is continuing to cause serious havoc on the global population’s health, economy, and livelihood. A critical way to suppress and restrain this pandemic is the early detection of COVID-19, which will help to control the virus. Chest X-rays are one of...

Descripción completa

Detalles Bibliográficos
Autores principales: T N, Sree Ganesh, Satish, Rishi, Sridhar, Rajeswari
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9596346/
https://www.ncbi.nlm.nih.gov/pubmed/36310764
http://dx.doi.org/10.1007/s00530-022-01015-4
Descripción
Sumario:The pandemic that the SARS-CoV-2 originated in 2019 is continuing to cause serious havoc on the global population’s health, economy, and livelihood. A critical way to suppress and restrain this pandemic is the early detection of COVID-19, which will help to control the virus. Chest X-rays are one of the more straightforward ways to detect the COVID-19 virus compared to the standard methods like CT scans and RT-PCR diagnosis, which are very complex, expensive, and take much time. Our research on various papers shows that the currently researchers are actively working for an efficient Deep Learning model to produce an unbiased detection of COVID-19 through chest X-ray images. In this work, we propose a novel convolution neural network model based on supervised classification that simultaneously computes identification and verification loss. We adopt a transfer learning approach using pretrained models trained on imagenet dataset such as Alex Net and VGG16 as back-bone models and use data augmentation techniques to solve class imbalance and boost the classifier’s performance. Finally, our proposed classifier architecture model ensures unbiased and high accuracy results, outperforming existing deep learning models for COVID-19 detection from chest X-ray images producing State of the Art performance. It shows strong and robust performance and proves to be easily deployable and scalable, therefore increasing the efficiency of analyzing chest X-ray images with high accuracy in detection of Coronavirus.